Number Theory#
The Theory of Integers
Sections#
Resources#
My Lesson
[ y ]
07-29-2021
. “Number Theory and Cryptography Complete Course | Discrete Mathematics for Computer Science”.
Richard E. Borcherds
[ y ]
01-13-2022
. “Introduction to number theory lecture 1.”.[ y ]
01-15-2022
. “Introduction to number theory lecture 2: Survey.”.[ y ]
01-17-2022
. “Introduction to number theory lecture 3: Divisibility and Euclid’s algorithms.”.[ y ]
01-18-2022
. “Introduction to number theory lecture 4. More on Euclid’s algorithm”.[ y ]
01-20-2022
. “Introduction to number theory lecture 5. Primes.”.
more
[ y ]
11-13-2023
. Douglas Shamlin Jr. “Ultimate Large Numbers List 2024 - The Biggest Numbers Ever!!!”.[ y ]
11-21-2023
. Shefs of Problem Solving. “A number theory adventure - JBMO 2002 - P3”.
[ y ] 02-28-2019
Shannon “MATHCHICK” Myers. “Direct Proof and Counterexample V: Floor and Ceiling”.
[ h ] The PrimePages: prime number research & records
Texts#
Bressoud. Factorization and Primality Testing. Springer.
Crandall & Pomerance. Prime Numbers: A Computational Perspective. Springer.
Davenport. The Higher Arithmetic. CUP.
LeVeque. Fundamentals of Number Theory. Dover.
[ h ] Vaughan, Robert. A Course of Elementary Number Theory.
Wagstaff. The Joy of Factoring. American Mathematical Society.
Figures#
[ w ]
1730-1783
Bézout, Étienne[ w ]
1950-----
Bressoud, David[ w ]
1879-1967
Carmichael, Robert[ w ]
1947-----
Cohen, Henri[ w ]
1947-2012
Crandall, Richard[ w ]
1865-1963
Hadamard, Jacques[ w ]
1877-1947
Hardy, G. H.[ w ]
---------
Lehman, R. Sherman1974
“Factoring Large Integers”https://programmingpraxis.com/2017/08/22/lehmans-factoring-algorithm/
[ w ]
1842-1891
Lucas, Édouard[ w ]
1944-----
Pomerance, Carl[ w ]
1866-1962
Poussin, Charles Jean de la Vallée[ w ]
1948-----
Schroeppel, Richard[ w ]
1945-----
Vaughan, Robert[ w ]
1945-----
Wagstaff Jr., Samuel S.
Terms#
[ w ] Aliquot Sum
[ w ] Arbitrary-Precision Arithmetic
[ w ] Arithmetic Function
[ w ] Bézout’s Identity
[ w ] Binary GCD Algorithm
[ w ] Carmichael Number
[ w ] Chinese Remainder Theorem
[ w ] Computational Number Theory
[ w ] Congruence of Squares
[ w ] Congruence Relation
[ w ] Coprime
[ w ] Diophantine Equation
[ w ] Dixon’s Factorization Method
[ w ] Euclid’s Lemma
[ w ] Euclid’s Theorem
[ w ] Euclidean Algorithm
[ w ] Euler’s Criterion
[ w ] Euler’s Totient Function
[ w ] Extended Euclidean Algorithm
[ w ] Factor Base
[ w ] Fast Inverse Square Root
[ w ] Fast Library for Number Theory (FLINT)
[ w ] Fermat Number
[ w ] Fermat’s Little Theorem
[ w ] Fermat’s Factorization Method
[ w ] Fundamental Theorem of Arithmetic
[ w ] General Number Field Sieve
[ w ] Greatest Common Divisior (GCD)
[ w ] GNU Multiple Precision Arithmetic Library (GMP)
[ w ] Integer Factorization
[ w ] Integer Square Root
[ w ] Jacobi Symbol
[ w ] L-Notation
[ w ] Law of Quadratic Reciprocity
[ w ] Law of Quadratic Reciprocity, proofs
[ w ] Legendre Symbol
[ w ] Lehmer’s GCD Algorithm
[ w ] Linnik’s Theorem
[ w ] Lucas’ Theorem
[ w ] Modular Arithmetic
[ w ] Number Theory Library
[ w ] PARI/GP
[ w ] Pollard’s Rho Algorithm
[ w ] Primality Test
[ w ] Prime Gap
[ w ] Prime Number Theorem
[ w ] Prime Power
[ w ] Prime, lists
[ w ] Prime-Counting Function
[ w ] Quadratic Residue
[ w ] Quadratic Sieve
[ w ] Rational Sieve
[ w ] Reduced Residue System
[ w ] Residue Number System
[ w ] RSA (Rivest–Shamir–Adleman)
[ w ] Sieve Theory
[ w ] Special Number Field Sieve
[ w ] Square Number
[ w ] Square Root, methods of computing
[ w ] Totativie
[ w ] Trial Division
[ w ] Wheel Factorization