Spherical Coordinates#

in R3

T:(ρ,ϕ,θ)(x,y,z)T1:(x,y,z)(ρ,ϕ,θ)T(ρ,ϕ,θ)=(ρsinϕcosθ,ρsinϕsinθ,ρcosϕ)=(x(ρ,ϕ,θ),y(ρ,ϕ,θ),z(ρ,ϕ,θ))transformationx(ρ,ϕ,θ)=rcosθ=ρsinϕcosθy(ρ,ϕ,θ)=rsinθ=ρsinϕsinθz(ρ,ϕ,θ)=ρcosϕtransformation equationsx2+y2=r=ρsinϕx2+y2+z2=ρ2Pythagorean identitydV=ρ2sinϕdρdϕdθJacobian


Revised

02 Apr 2023


Spherical Coordinate System#

Spherical coordinates are good to use for regions with more than one axis of rotational symmetry.

In other words, more than one of the cross sections of the region is circular.


Transformation Equations (x,y,z)(ρ,ϕ,θ)#

ρ0distance from the origin0ϕπangle from the positive z-axis to the negative z-axis0θ2πangle from the positive x-axis in the xy-plane

If we are thinking about the Earth, then θ is longitude, ϕ is latitude, and ρ is the distance from the center of the Earth.

x(ρ,ϕ,θ)=rcosθ=ρsinϕcosθy(ρ,ϕ,θ)=rsinθ=ρsinϕsinθz(ρ,ϕ,θ)=ρcosϕx2+y2=r=ρsinϕx2+y2+z2=ρ2

Infinitesimals#

dρdϕdθ-voxels in the rectangular ρϕθ-grid are transformed into 3D wedges dV in the spherical xyz-grid.

dVdρdϕdθ

How big is spherical dV in relation to rectangular dρdϕdθ-voxel?

The further the dρdϕdθ-voxel is in the ρ-direction in the rectangular dρdϕdθ-grid the larger the 3D wedge dV is in the spherical xyz-grid.

dV=ρ2sinϕdρdϕdθfrom the Jacobian

Jacobian#

(x,y,z)(ρ,ϕ,θ)=|xρxϕxθyρyϕyθzρzϕzθ|=|sinϕcosθρcosϕcosθρsinϕsinθsinϕsinθρcosϕsinθρsinϕcosθcosϕρsinϕ0|=cosϕ|ρcosϕcosθρsinϕsinθρcosϕsinθρsinϕcosθ|+ρsinϕ|sinϕcosθρsinϕsinθsinϕsinθρsinϕcosθ|=cosϕ(ρ2cosϕsinϕcos2θ+ρ2cosϕsinϕsin2θ)+ρsinϕ(ρsin2ϕcos2θ+ρsin2ϕsin2θ)=ρ2cos2ϕsinϕ(cos2θ+sin2θ)+ρ2sin3ϕ(cos2θ+sin2θ)=ρ2sinϕ(cos2ϕ+sin2ϕ)=ρ2sinϕ


Examples#


[EXAMPLE]

An upper half ball of radius ρ=3 centered at the origin has a density d

d(x,y,z)=x2zx2+y2+z2g cm3

Calculate its mass.

massm=81π16g

massm=Rd(x,y,z)dV=Rx2zx2+y2+z2dxdydz

Draw the region in R3.

Find the new bounds.

0ρ3

z0ρcosϕ0cosϕ00ϕπ2where0ϕπ

0θ2π

massm=Rx2zx2+y2+z2dxdydz=R(ρsinϕcosθ)2(ρcosϕ)ρ2ρ2sinϕdρdϕdθ=Rρ3sin3ϕcosϕcos2θdρdϕdθ=θ=0θ=2πϕ=0ϕ=π2ρ=0ρ=3ρ3sin3ϕcosϕcos2θdρdϕdθ=θ=0θ=2πcos2θdθϕ=0ϕ=π2sin3ϕcosϕdϕρ=0ρ=3ρ3dρby factoring=πϕ=0ϕ=π2sin3ϕcosϕdϕρ=0ρ=3ρ3dρπ=θ=0θ=2πcos2θdθby trigonometric symmetry=π4ρ=0ρ=3ρ3dρ14=ϕ=0ϕ=π2sin3ϕcosϕdϕby u-substitution=81π16344=ρ=0ρ=3ρ3dρ

ϕ=0ϕ=π2sin3ϕcosϕdϕu=sinϕdu=cosϕdϕϕ=0u=0ϕ=π2u=1ϕ=0ϕ=π2sin3ϕcosϕdϕ=u=0u=1u3du=(14u4)|u=0u=1=14


[EXAMPLE]

64π5(131323)=Rz2dVwhereR={(x,y,z)x2+y2+z24,zx2+y2}

Draw the region in R3.

Cone with a spherical top

  • Sphere of radius 2 at the origin x2+y2+z2=4

  • Cone z=x2+y2

Find the new bounds.

x2+y2+z24ρ24ρ2whereρ0

zx2+y2ρcosϕρsinϕcosϕsinϕcotϕ1tanϕϕ=π4where0ϕπ

0θ2π

Rz2dV=R(ρcosϕ)2ρ2sinϕdρdϕdθ=Rρ4cos2ϕsinϕdρdϕdθ=θ=0θ=2πϕ=0ϕ=π4ρ=0ρ=2ρ4cos2ϕsinϕdρdϕdθ=θ=0θ=2πdθϕ=0ϕ=π4cos2ϕsinϕdϕρ=0ρ=2ρ4dρby factoring=64π5ϕ=0ϕ=π4cos2ϕsinϕdϕ255=ρ=0ρ=2ρ4dρ=64π5(131323)131323=ϕ=0ϕ=π4cos2ϕsinϕdϕ8.6651

import numpy as np

64*np.pi/5*((1/3)-(1/(3*2**(3/2))))
8.66505352128086

0π4cos2θsinθdθu=cosθdu=sinθdθdu=sinθdθθ=0u=1θ=π4u=120π4cos2θsinθdθ=121u2du=(13u3)|121=1313(12)3=1313230.2155

((1/3)-(1/(3*2**(3/2))))
0.21548220313557542

[EXAMPLE]

Rx2+y2+z2dVwhereR={(x,y,z)x2+y2+z24,z1}

Draw the region in R3.

Region bounded by

  • Sphere of radius 2

  • Plane parallel to the xy-plane at z=1

Find the new bounds.

x2+y2+z24ρ24ρ2whereρ0

equation of the sphere ρ=2

z1ρcosϕ1ρsecϕ

equation of the plane ρ=secϕ

secϕρ2

2=secϕcosϕ=12ϕ=π3

0ϕπ3

0θ2π

Rx2+y2+z2dV=Rρ3sinϕdρdϕdθ=θ=0θ=2πϕ=0ϕ=π3ρ=secϕρ=2ρ3sinϕdρdϕdθ=θ=0θ=2πdθϕ=0ϕ=π3ρ=secϕρ=2ρ3sinϕdρdϕby factoring=2πϕ=0ϕ=π3ρ=secϕρ=2ρ3sinϕdρdϕ=2πϕ=0ϕ=π3(14ρ4sinϕ)|ρ=secϕρ=2dϕ=π2ϕ=0ϕ=π3(16sinϕsec4ϕsinϕ)dϕ=8πϕ=0ϕ=π3sinϕdϕπ2ϕ=0ϕ=π3sec4ϕsinϕdϕ=4ππ2ϕ=0ϕ=π3sec4ϕsinϕdϕ12=ϕ=0ϕ=π3sinϕdϕ=4π7π673=0π3sec4θsinθdθ=17π6

0π3sec4θsinθdθ=0π31cos4θsinθdθu=cosθdu=sinθdθdu=sinθdθθ=0u=1θ=π3u=120π3sec4θsinθdθ=121u4du=(13u3)|121=13(1)3+13(12)3=73


GeoGebra#

R=3

surface(Rsin(p)cos(t),Rsin(p)sin(t),Rcos(p),p,0,P,t,0,T)


Terms#

  • [W] Determinant

  • [W] Fundamental Plane

  • [W] Jacobian

  • [W] Spherical Coordinate System