Logic#


Sections#


Resources#

[ Y ] David Agler. Logic and Philosophy.

Jan Reimann. Math 557, Mathematical Logic, Penn State, Spring 2021.

  • [ y ] 01-31-2021. “Math 557 - Cardinals and Alephs”.

  • [ y ] 02-03-2021. “Math 557 - Cardinal arithmetic and the Continuum Hypothesis”.

  • [ y ] 02-06-2021. “Math 557 – Cofinality”.

  • [ y ] 02-07-2021. “Math 557 – First-order languages”.

  • [ y ] 02-08-2021. “Math 557 – Properties of terms and formulas”.

  • [ y ] 02-09-2021. “Math 557 – Semantics of First-order Logic”.

  • [ y ] 02-23-2021. “Math 557 – Validities”.

  • [ y ] 02-23-2021. “Math 557 – Substitution”.

  • [ y ] 02-23-2021. “Math 557 – Logical Implication and Proof”.

  • [ y ] 02-23-2021. “Math 557 – Consistency and Completeness”.

  • [ y ] 02-23-2021. “Math 557 – The Completeness Theorem”.

  • [ y ] 02-28-2021. “Math 557 – Henkin Theories”.

  • [ y ] 02-26-2021. “Math 557 – Completing Theories”.

  • [ y ] 03-02-2021. “Math 557 — Proving the Model Existence Theorem”.

  • [ y ] 03-06-2021. “Math 557 - Elementary Equivalence”.

  • [ y ] 03-08-2021. “Math 557 – Elementary Substructures”.

  • [ y ] 03-07-2021. “Math 557 – The Löwenheim-Skolem Theorems”.

  • [ y ] 03-13-2021. “Math 557 – Quantifier Elimination”.

  • [ y ] 03-16-2021. “Math 557 – Quantifier Elimination for Algebraically Closed Fields”.

  • [ y ] 03-20-2021. “Math 557 – Turing Machines”.

  • [ y ] 03-22-2021. “Math 557 – Enumerating Turing Machines”.

  • [ y ] 03-23-2021. “Math 557 – Unsolvable Problems”.

  • [ y ] 03-28-2021. “Math 557 – Primitive recursive functions”.

  • [ y ] 03-28-2021. “Math 557 – The Ackermann function”.

  • [ y ] 03-31-2021. “Math 557 – Recursive Functions”.

  • [ y ] 04-03-2021. “Math 557 – Coding Formulas”.

  • [ y ] 04-05-2021. “Math 557 – Deciding Theories”.

  • [ y ] 04-11-2021. “Math 557 – Peano Arithmetic”.

  • [ y ] 04-12-2021. “Math 557 – Arithmetic Formulas”.

  • [ y ] 04-13-2021. “Math 557 – Defining Computable Functions in Arithmetic”.

Jan Reimann. MATH 574, Topics in Logic, Penn State, Spring 2014.

  • [ y ] 02-13-2015. “Math 574, Introductory Lecture: three approaches to quantity of information”.

  • [ y ] 02-13-2015. “Math 574, Lesson 1-1: Strings”.

  • [ y ] 02-13-2015. “Math 574, Lesson 1-2: Sequence Spaces”.

  • [ y ] 01-13-2014. “Math 574, Lesson 1-3: Infinite paths through trees”.

  • [ y ] 02-13-2015. “Math 574, Lesson 1-4: Measure Spaces”.

  • [ y ] 02-13-2015. “Math 574, Lesson 1-5: Measures on Sequence Spaces”.

  • [ y ] 02-13-2015. “Math 574, Lesson 1-6: Stochastic Processes”.

  • [ y ] 02-04-2014. “Math 574, Lesson 2-1: Finite Automata”.

  • [ y ] 02-09-2014. “Math 574, Lesson 2-2: Turing Machines”.

  • [ y ] 02-13-2015. “Math 574, Lesson 2-3: Turing machines - an example”.

  • [ y ] 02-13-2015. “Math 574, Lesson 2-4: Computable Functions”.

  • [ y ] 02-13-2015. “Math 574. Lesson 2-5: The Halting Problem”.

  • [ y ] 02-13-2015. “Math 574, Lesson 2-6: Undecidability of the Halting Problem”.

  • [ y ] 02-13-2015. “Math 574, Lesson 3-1: Subshifts”.

  • [ y ] 02-13-2015. “Math 574, Lesson 3-2: Measurable Dynamics”.

  • [ y ] 02-13-2015. “Math 574, Lesson 3-3: Markov Shifts”.

  • [ y ] 02-13-2015. “Math 574, Lesson 3-3: Markov Shifts”.

  • [ y ] 02-13-2015. “Math 574, Lesson 3-4: Markov Chains”.

  • [ y ] 02-13-2015. “Math 574, Lesson 3-5: Ergodicity”.

  • [ y ] 02-13-2015. “Math 574, Lesson 3-6: The Ergodic Theorem”.

  • [ y ] 02-13-2015. “Math 574, Lesson 4-1: Information Measures”.

  • [ y ] 02-13-2015. “Math 574, Lesson 4-2: The Definition of Entropy”.

  • [ y ] 02-13-2015. “Math 574, Lesson 4-3: Kolmogorov Complexity”.

  • [ y ] 02-13-2015. “Math 574, Lesson 4-4: Prefix-free Complexity”.

  • [ y ] 02-13-2015. “Math 574, Lesson 4-5: Mutual Information”.

  • [ y ] 02-13-2015. “Math 574, Lesson 5-1: Optimal Codes”.

  • [ y ] 03-07-2024 All Angles. “How to unify logic & arithmetic”.

more

  • [ y ] 01-13-2024. UCLA Automated Reasoning Group. “Beyond Truth & Falsehood: Logic as a Calculus of Events”.


Texts#

  • [ h ][ y ] Agler, David w. (2012). Symbolic Logic: Syntax, Semantics, and Proof. Rowman and Littlefield.

  • Andrews, Peter B. (2002). An Introduction to Mathematical Logic and Type Theory: To Truth Through Proof. Springer: Applied Logic Series.

  • Ayala-Rincón, Mauricio & Flávio L. C. de Moura. (2017). Applied Logic for Computer Scientists: Computational Deduction and Formal Proofs. Springer: Undergraduate Topics in Computer Science.

  • Ayer, Alfred J. (1952). Language, Turth, and Logic. Dover.

  • Boolos, George s.; John H. Burgess; & Richard C. Jeffrey. (2007). Computability and Logic. 5th Ed. Cambridge University Press.

  • Burgess, John P. (2012). Philosophical Logic. Princeton University Press.

  • Carroll, Lewis. (1958). Symbolic Logic and the Game of Logic. Dover.

  • Cellucci, Carlo. (2016). Rethinking Logic: Logic in Relation to Mathematics, Evolution, and Method. Springer.

  • Csirmaz, Laszlo & Zalán Gyenis. (2022). Mathematical Logic: Exercises and Solutions. Springer: Problem Books in Mathematics.

  • Dau, Frithjof. (2003). The Logic System of Concept Graphs with Negation: And Its Relationship to Predicate Logic. Springer: Lecture Notes in Computer Science.

  • De Swart, Harrie. (2018). Philosophical and Mathematical Logic. Springer Undergraduate Texts in Philosophy.

  • Enderton, Herbert B. (2001). A Mathematical Introduction to Logic. 2nd Ed. Academic Press.

  • Freund, Max A. (2019). The Logic of Sortals: A Conceptualist Approach. Springer: Synthese Library.

  • Gamut, L. T. F. (2020). Logic, Language, and Meaning, Vol. I: Introduction to Logic. University of Chicago Press.

  • Gamut, L. T. F. (2020). Logic, Language, and Meaning, Vol. II: Intensional Logic and Logical Grammar. University of Chicago Press.

  • Haack. Susan. (1978). Philosophy of Logics. Cambridge University Press.

  • Harrison, John. (2009). Handbook of Practical Logic and Automated Reasoning. Cambridge University Press.

  • Hitzler, Pascal & Anthony Seda. (2016). Mathematical Aspects of Logic Programming Semantics. CRC Press.

  • Iacona, Andrea. LOGIC: Lecture Notes for Philosophy, Mathematics, and Computer Science. Springer Undergraduate Texts in Philosophy.

  • Jongsma, Calvin. (2019). Introduction to Discrete Mathematics via Logic and Proof. Springer Undergraduate Texts in Mathematics.

  • Kac, Mark & Stanislaw M. Ulam. (1992). Mathematics and Logic. Dover.

  • Kripke, Saul. (1981). Naming and Necessity. Wiley-Blackwell.

  • [ b ] Leary, Christopher & Lars Kristiansen. (2015). A Friendly Introduction to Mathematical Logic. Milne Library.

  • Mates, Benson. Stoic Logic.

  • Mendelson, Elliot. (2015). Introduction to Mathematical Logic. CRC Press..

  • Milanic, Martin; Brigitte Servatius; & Herman Servatius. (2023). Discrete Mathematics with Logic. Acadmeic Press.

  • Nerode, Anil & Richard A. Shore. (1997). Logic for Applications. 2nd Ed. Springer: Graduate Texts in Computer Science.

  • Novaes, Catarina Dutilh. (2012). Formal Languages in Logic: A Philosophical and Congitive Analysis. Cambridge University Press.

  • Parry, William T. & Edward A. Hacker. (1991). Aristotelian Logic. SUNY Press.

  • Peregrin, Jaroslav. (2021). Philosophy of Logical Systems. Routledge Studies in Contemporary Philosophy.

  • Quine, Willard Van Orman. (1986). Philosophy of Logic. 2nd Ed. Harvard University Press.

  • Rini, Adriane. (2011). Aristotle’s Modal Proofs: Prior Analytics A8-22 in Predicate Logic. Springer: The New Synthese Historical Library.

  • Sider, Theodore. (2010). Logic for Philosophy. Oxford University Press.

  • Soames, Scott. (2012). Philosophy of Language. Princeton University Press.

  • Stillwell, John. (2022). The Story of Proof: Logic and the History of Mathematics. Princeton University Press.

  • Suppes, Patrick & Shirley Hill. (2010). First Course in Mathematical Logic. Dover.

  • Vingron, Shimon Peter. (2004). Switching Theory: Insight through Predicate Logic. Springer.

  • Wasilewska, Anita. (2018). Logics for Computer Science: Classical and Non-Classical. Springer.


Figures#

  • [ w ] Aristotle

    • [ s ] Aristotle’s Logic

    • [ s ] Aristotle on Non Contradiction

  • [ w ][ s ] Boole, George (1815-1864)

  • [ w ] Cantor, Georg (1845-1918)

    • [ w ] Cantor’s First Set Theory Article

  • [ w ] Chrysippus of Soli

  • [ w ] Curry, Haskell (1900-1982)

  • [ w ] De Morgan, Augustus

  • [ w ] De Saussure, Ferdinand (1857-1913)

  • [ w ] Dedekind, Richard

  • [ w ] Dummett, Michael

  • [ w ] Fraenkel, Abraham (1891-1965)

  • [ w ][ s ] Frege, Gottlob (1848-1925)

    • [ s ] Frege’s Logic

    • [ s ] Frege’s Theorem and Foundations for Arithmetic

  • [ w ] Gentzen, Gerhard (1909-1945)

  • [ w ][ s ] Gödel, Kurt

  • [ w ] Hintikka, Jaakko

  • [ w ] Huet, Gérard (1947-)

  • [ w ] Kripke, Saul

  • [ w ] Leibniz

    • [ s ] Leibniz’ Influence on 19th Century Logic

  • [ w ][ s ] Leśniewski, Stanisław (1886-1939)

  • [ w ][ s ] Lewis, Clarence Irving (1883-1964)

  • [ w ] Lukasiewicz, Jan (1878-1956)

  • [ w ] Marcus, Ruth (1921-2012)

  • [ w ] Montague, Richard (1930-1971)

  • [ w ] Peano, Giuseppe

    • [ w ] (1889). Arithmetices principia, nova methodo exposita.

  • [ w ] Peirce, Charles Sanders

  • [ w ][ s ] Peirce, Charles Sanders

  • [ w ] Post, Emil (1897-1954)

  • [ w ] Prior, Arthur

  • [ w ] Russell, Bertrand

    • [ w ] (1905). “On Denoting”.

  • [ w ] Schonfinkel, Moses

  • [ w ] Sheffer, Henry (1882-1964)

  • [ w ][ s ] Tarski, Alfred (1901-1983)

    • [ s ] Tarski’s Truth Definitions

  • [ w ] Venn, John (1834-1923)

  • [ w ] Wittgenstein, Ludwig

  • [ w ] Zermelo, Ernst (1871-1953)

    • [ s ] Zermelo’s Axiomatization of Set Theory


Terms#

Formal Logic#

  • [ w ] Abduction

  • [ w ] Abjunction

  • [ w ] Abstract Rewriting System

  • [ w ] Aggrippan Trilemma

  • [ w ][ s ] Algebra

  • [ w ][ s ] Algebra of Logic

  • [ w ][ s ] Algebraic Propositional Logic

  • [ w ] Alphabet

  • [ w ] Ampliativity

  • [ w ][ s ] Analysis

  • [ w ][ s ] Ancient Logic

  • [ w ] Antecedent

  • [ w ] Argument

  • [ w ] Argumentation Theory

  • [ w ] Aristotelian Logic

  • [ w ] Arity

  • [ w ] Atomic Formula

  • [ w ] Atomic Sentence

  • [ w ] Axiom

  • [ w ] Axiom Schema

  • [ w ] Barcan Formula

  • [ w ] Biconditional

  • [ w ] Boolean Algebra

    • [ s ] Boolean Algebra, Mathematics

  • [ w ] Boolean Algebra Structure

  • [ w ] Boolean Function

  • [ w ] Buridan Formula

  • [ w ] Canonical Normal Form

  • [ w ] Cardinality

  • [ w ] Categorical Proposition

  • [ w ][ s ] Category Theory

  • [ w ][ s ] Classical Logic

  • [ w ] Combinational Logic

  • [ w ][ s ] Combinatory Logic

  • [ w ] Compactness Theorem

  • [ w ] Completeness

  • [ w ] Compound Proposition

  • [ w ] Comprehension

  • [ w ][ s ] Conditional

  • [ w ] Confluence

  • [ w ] Conjunction

  • [ w ] Conjunctive Normal Form

  • [ w ][ s ] Connexive Logic

  • [ w ] Connotation

  • [ w ] Consequent

  • [ w ] Consistency

  • [ w ] Constant Symbol

  • [ w ] Constructive Dilemma

  • [ w ] Contingency

  • [ w ][ s ] Contradiction

  • [ w ] Contraposition

  • [ w ] Converse Conditional/Implication

  • [ w ] Converse Nonimplication

  • [ w ][ s ] Counterfactual

  • [ w ] Criteria of Truth

  • [ w ] Critical Thinking

  • [ w ] De Dicto

  • [ w ] De Morgan’s Laws

  • [ w ] De Re

  • [ w ] Deductive Reasoning

  • [ w ] Defeasible Reasoning

  • [ w ][ s ] Definition

  • [ w ] Denotation

  • [ w ] Deontic Logic

  • [ w ] Destructive Dilemma

  • [ w ] Diagonal Lemma

  • [ w ] Disjunction

  • [ w ] Disjunctive Normal Form

  • [ w ] Disjunctive Syllogism

  • [ w ] Domain of Discourse

  • [ w ] Enthymeme ἐνθύμημα

  • [ w ] Enumeration

  • [ w ] Equivocation

  • [ w ] Exclusive Disjunction

  • [ w ] Existential Generalization

  • [ w ] Existential Instantiation

  • [ w ] Existential Quantification

  • [ w ] Explicit Substitution

  • [ w ] Extension, Predicate Logic

  • [ w ] Extension, Semantics

  • [ w ] Extensionality

  • [ w ] Fallacy

  • [ w ] Falsity

  • [ w ] Falsum

  • [ w ] Finitarity

  • [ w ] First-Order Logic

  • [ w ] Formal Language

  • [ w ] Formal Proof

  • [ w ] Formal Semantics

  • [ w ] Formal System

  • [ w ] Formalism

  • [ w ] Formation Rule

  • [ w ] Formula, Closed

  • [ w ] Formula

  • [ w ] Formula, Open

  • [ w ] Free Object

  • [ w ] Frege’s Principle

  • [ w ] Function Symbol

  • [ w ] Functional Completeness

  • [ w ] Functional Predicate

  • [ w ][ s ] Future Contingent

  • [ w ][ s ] Fuzzy Logic

  • [ w ][ s ] Generalized Quantifier

  • [ w ] Gödel’s Completeness Theorems

  • [ w ] Gödel’s Incompleteness Theorems

  • [ w ] Ground Expression

  • [ w ] Herbrand Structure

  • [ w ] Heuristic

  • [ w ] Higher-Order Logic

  • [ w ] History of Logic

  • [ w ] Hypothetical Syllogism

  • [ w ][ s ] Identity of Indiscernibles

  • [ w ] If and only if

  • [ w ] Implication

  • [ w ] Inclusion

  • [ w ] Inclusive Disjunction

  • [ w ] Indian Logic

  • [ w ] Induction

  • [ w ] Inference

  • [ w ] Infinitarity

  • [ w ] Infinite Regress

  • [ w ] Infix Notation

  • [ w ] Informal Logic

  • [ w ] Intension

  • [ w ] Intensional Logic

  • [ w ] Interpretation, Logical

  • [ w ] Interpretation, Model-Theoretic

  • [ w ][ s ] Intuitionistic Logic

    • [ s ] The Development of Intuitionistic Logic

  • [ w ] Inverse

  • [ w ] Islamic Logic

  • [ w ] Justification

  • [ w ] Knowledge, definitions

  • [ w ] Law of Bivalence

  • [ w ] Law of Explosion

  • [ w ] Law of Excluded Middle

  • [ w ] Law of Identity

  • [ w ] Law of Non Contradiction

  • [ w ] Law of Thought

  • [ w ][ s ] Liar Paradox

  • [ w ][ s ] Linear Logic

  • [ w ] Logic

    • [ w ][ s ] Logic and Games

    • [ w ][ s ] Logic and Ontology

    • [ w ][ s ] Logic of Belief Revision

  • [ w ] Logica Nova

  • [ w ] Logical AND

  • [ w ] Logical Assertion

  • [ w ] Logical Atomism

  • [ w ] Logical Biconditional

  • [ w ] Logical Connective

  • [ w ][ s ] Logical Consequence

  • [ w ][ s ] Logical Constant

  • [ w ] Logical Equivalence

  • [ w ] Logical Fallacy

  • [ w ][ s ] Logical Form

  • [ w ] Logical Interpretation

  • [ w ] Logical NAND

  • [ w ] Logical NOR

  • [ w ] Logical NOT

  • [ w ] Logical Operation

  • [ w ] Logical OR

  • [ w ] Logical Positivism

  • [ w ] Logical Structure

  • [ w ] Logical Symbol

  • [ w ][ s ] Logical Truth

  • [ w ] Logical XNOR

  • [ w ] Logical XOR

  • [ w ][ s ] Logicism

  • [ w ][ s ] Many-Valued Logic

  • [ w ] Material Biconditional

  • [ w ] Material Conditional/Implication

  • [ w ] Material Nonimplication

  • [ w ] Mathematical Constant

  • [ w ] Mathematical Expression

  • [ w ] Mathematical Induction

  • [ w ] Mathematical Language

  • [ w ] Mathematical Logic

  • [ w ] Mathematical Model

  • [ w ] Mathematical Structure

  • [ w ] Mathematical Variable

  • [ w ] Metalogic

  • [ w ] Metavariable

  • [ w ] Middle Term

  • [ w ][ s ] Modal Logic

  • [ w ][ s ] Model Theory

    • [ s ] First Order Model Theory

  • [ w ] Modus Ponens

  • [ w ] Modus Tollens

  • [ w ] Montague Grammar

  • [ w ][ s ] Montague Semantics

  • [ w ] Natural Deduction

  • [ w ] Natural Number

  • [ w ] Necessity

  • [ w ][ s ] Negation

  • [ w ] Non Logical Symbol

  • [ w ] Normal Form

  • [ w ] Operand

  • [ w ] Operation

  • [ w ][ s ] Paraconsistent Logic

  • [ w ][ s ] Paradox

  • [ w ] Particular

  • [ w ] Philosophical Logic

  • [ w ] Philosophy of Language

  • [ w ] Philosophy of Logic

  • [ w ][ s ] Plural Quantification

  • [ w ] Polish Notation

  • [ w ] Possible World

  • [ w ] Predicate

  • [ w ] Predicate, Grammatical

  • [ w ] Predicate Logic

  • [ w ] Predicate Variable

  • [ w ] Predication

  • [ w ] Premise

  • [ w ] Prenex Normal Form

  • [ w ] Principle of Compositionality

  • [ w ] Problem of the Criterion

  • [ w ] Problem of Future Contingents

  • [ w ] Problem of Universals

  • [ w ] Product Term

  • [ w ] Proof System

  • [ w ] Proof Theory

    • [ s ] Proof-Theoretic Semantics

  • [ w ] Proposition

  • [ w ] Propositional Formula

  • [ w ] Propositional Function

  • [ w ] Propositional Logic

  • [ w ] Propositional Variable

  • [ w ][ s ] Quantifier

  • [ w ] Reason

  • [ w ] Recursion

  • [ w ] Recursive Definition

  • [ w ] Reduct

  • [ w ] Reductio ad absurdum

  • [ w ] Reduction System

  • [ w ][ s ] Reference

  • [ w ] Regress Argument

  • [ w ] Relation

  • [ w ] Relation, Finitary

  • [ w ][ s ] Relevance

  • [ w ] Resolution

  • [ w ] Rewriting

  • [ w ] Rule of Inference

  • [ w ][ s ] Russell’s Paradox

  • [ w ] Satisfiability

  • [ w ] Scope

  • [ w ][ s ] Second-Order Logic

  • [ w ][ s ] Self-Reference

  • [ w ] Sentence

  • [ w ] Sequence

  • [ w ] Sequent

  • [ w ] Sequent Calculus

  • [ w ] Sheffer Stroke

  • [ w ] Sign

  • [ w ] Signature

  • [ w ][ s ] Sorites Paradox

  • [ w ] Soundness

  • [ w ][ s ] Square of Opposition

  • [ w ] Statement

  • [ w ] Stoic Logic

  • [ w ] String

  • [ w ] Structure

  • [ w ] Subject

  • [ w ] Subjunctive Possibility

  • [ w ] Substitution

  • [ w ][ s ] Substructural Logic

  • [ w ] Sufficiency

  • [ w ] Syllogism

    • [ s ] Medieval Theories of the Syllogism

  • [ w ] Syntax

  • [ w ][ s ] Synthesis

  • [ w ] Tautology ταυτολογία

  • [ w ][ s ] Temporal Logic

  • [ w ] Term

  • [ w ] Term Algebra

  • [ w ] Term Logic

  • [ w ] Three-Valued Logic

  • [ w ] Transition System

  • [ w ] Truth

  • [ w ] Truth Table

  • [ w ][ s ] Truth Value

  • [ w ] Truth Function

  • [ w ] Truth-Bearer

  • [ w ][ s ] Type Theory

    • [ s ] Intuitionistic Type Theory

  • [ w ] Unification

  • [ w ] Uninterpreted Function

  • [ w ] Universal

  • [ w ] Universal Algebra

  • [ w ] Universal Generalization

  • [ w ] Universal Instantiation

  • [ w ] Universal Quantification

  • [ w ] Vacuous Truth

  • [ w ][ s ] Vagueness

  • [ w ] Validity

  • [ w ] Valuation

  • [ w ] Variable, Bound

  • [ w ] Variable, Free

  • [ w ] Venn Diagram

  • [ w ] Verum

  • [ w ][ s ] Vienna Circle

  • [ w ] Well-Formed Formula (wff)

  • [ w ] Zeroth-Order Logic

Informal#

  • [ w ] Ad Hominem [argumentum ad hominem]

  • [ w ] Affirmative Conclusion from a Negative Premise

  • [ w ] Affirming the Consequent

  • [ w ] Affirming a Disjunct

  • [ w ] Appeal to Consequences [argumentum ad consequentiam]

  • [ w ] Appeal to Emotion [argumentum ad passiones]

  • [ w ] Appeal to Fear [argumentum ad metum, argumentum in terrorem]

  • [ w ] Appeal to Flattery [argumentum ad superbiam]

  • [ w ] Appeal to Pity [argumentum ad misericordiam]

  • [ w ] Appeal to Ridicule [argumentum ad absurdo]

  • [ w ] Appeal to Spite [argumentum ad odium]

  • [ w ] Argument from Authority, Appeal to Authority [argumentum ab auctoritate, argumentum ad verecundiam]

  • [ w ] Argument from Fallacy

  • [ w ] Argument from Ignorance, Appeal to Ignorance [argumentum ad ignorantiam]

  • [ w ] Argument from Silence [argumentum ex silentio]

  • [ w ] Begging the Question [petitio principii]

  • [ w ] Cherry Picking

  • [ w ] Circular Reasoning

  • [ w ] Cognitive Biases (list)

  • [ w ] Confusion of the Inverse

  • [ w ] Contextomy (quoting out of context)

  • [ w ] Denying the Antecedent

  • [ w ] Equivocation

  • [ w ] Fallacies (list)

  • [ w ] Fallacy of Composition

  • [ w ] Fallacy of Definition

  • [ w ] Fallacy of Division

  • [ w ] Fallacy of Four Terms

  • [ w ] Fallacy of the Single Cause

  • [ w ] Fallacy of the Undistributed Middle

  • [ w ] False Dilemma

  • [ w ] Faulty Generalization

  • [ w ] Formal Fallacy

  • [ w ] Illicit Major

  • [ w ] Illicit Minor

  • [ w ] Informal Fallacy

  • [ w ] Irrelevant Conclusion [ignoratio elenchi]

  • [ w ] Jumping to Conclusions

  • [ w ] Ludic Fallacy

  • [ w ] Mathematical Fallacy

  • [ w ] Principle of Charity

  • [ w ] Principle of Humanity

  • [ w ] Procatalepsis

  • [ w ] Red Herring

  • [ w ] Reification

  • [ w ] Slippery Slope

  • [ w ] Sorites Paradox

  • [ w ] Strawman

  • [ w ] Trivial Objection

  • [ w ] Wishful Thinking

Sets#

  • [ w ] Algebraic Number

  • [ w ][ s ] Axiom of Choice

  • [ w ] Axiom of Empty Set

  • [ w ] Axiom of Extensionality

  • [ w ] Axiom of Infinity

  • [ w ] Axiom of Power Set

  • [ w ] Cantor’s Diagonal Argument

  • [ w ] Cantor’s Theorem

  • [ w ] Cardinal Number

  • [ w ] Cardinality of the Continuum

  • [ w ] Cartesian Product

  • [ w ] Class

  • [ w ] Continuum

  • [ w ] Continuum Hypothesis

  • [ w ] Dedekind Cut

  • [ w ] Element

  • [ w ] Empty Set

  • [ w ] Equinumerosity

  • [ w ] Family

  • [ w ] Intension

  • [ w ] Mathematical Object

  • [ w ] Multiset

  • [ w ] Ordinal Arithmetic

  • [ w ] Ordinal Number

  • [ w ] Power Set

  • [ w ] Real Number

  • [ w ] Real Number, Decimal Representation

  • [ w ] Set

  • [ w ] Set, Countable

  • [ w ] Set, Infinite

  • [ w ] Set, Uncountable

  • [ w ] Set-Builder Notation

  • [ w ] Singleton

  • [ w ] Subset

  • [ w ] Successor Cardinal

  • [ w ] Successor Ordinal

  • [ w ] Transcendental Number

  • [ w ] Union

  • [ w ] Well-Order

  • [ w ] Zermelo Set Theory

  • [ w ] Zermelo-Fraenkel Set Theory

Arithmetic#

  • [ w ] Addition

  • [ w ] Arithmetic

  • [ w ] Difference

  • [ w ] Dividend

  • [ w ] Division

  • [ w ] Divisor

  • [ w ] Exponentiation

  • [ w ] Factor

  • [ w ] Function

  • [ w ] Function Notation

  • [ w ] Logarithm

  • [ w ] Mathematical Table

  • [ w ] Modulation

  • [ w ] Multiplicand

  • [ w ] Multiplication

  • [ w ] Multiplier

  • [ w ] Nth Root

  • [ w ] Product

  • [ w ] Quotient

  • [ w ] Remainder

  • [ w ] Subtraction

  • [ w ] Subtrahend

  • [ w ] Sum

  • [ w ] Summand

Automata and Computation#

  • [ w ] Abstract Machine

  • [ w ] Automata Theory

  • [ w ] Automaton

  • [ w ] Computation

  • [ w ] Finite-State Machine

  • [ w ] Hybrid Automaton

  • [ w ] Model of Computation

  • [ w ] State

  • [ w ] Timed Automaton

  • [ w ] Turing Machine

Programming Languages#

  • [ w ] Axiomatic Semantics

  • [ w ] Correctness

  • [ w ] Denotational Semantics

  • [ w ] Formal Specification

  • [ w ] Formal Verification

  • [ w ] Hoare Logic

  • [ w ] Logic Programming

  • [ w ] Operational Semantics

  • [ w ] Programming Language Theory

  • [ w ] Prolog

  • [ w ] Pure Function

  • [ w ] Semantics

Digital Logic#

Figures

  • [ w ] Gray, Frank (1887-1969)

  • [ w ] Karnaugh, Maurice (1924-2022)

Terms

  • [ w ] Adder

  • [ w ] Arithmetic Logic Unit

  • [ w ] Boolean Circuit

  • [ w ] Circuit Complexity

  • [ w ] Coincidence Circuit

  • [ w ] Combinational Logic

  • [ w ] Digital Electronics

  • [ w ] Encoder

  • [ w ] Flip-Flop

  • [ w ] Gray Code

  • [ w ] Hazard

  • [ w ] Karnaugh Map

  • [ w ] Ladder Logic

  • [ w ] Logic Gate

  • [ w ] Logic Optimization

  • [ w ] Multiplexer

  • [ w ] One-Hot

  • [ w ] Product of Sums (POS) Expression

  • [ w ] Relay Logic

  • [ w ] Sequential Logic

  • [ w ] Signal Propagation Delay

  • [ w ] Signalling Block System

  • [ w ] Subtractor

  • [ w ] Sum of Products (SOP) Expression

  • [ w ] Switching Circuit Theory