Logic#
Sections#
Resources#
[ Y ] David Agler. Logic and Philosophy.
Jan Reimann. Math 557, Mathematical Logic, Penn State, Spring 2021.
[ y ]
01-31-2021
. “Math 557 - Cardinals and Alephs”.[ y ]
02-03-2021
. “Math 557 - Cardinal arithmetic and the Continuum Hypothesis”.[ y ]
02-06-2021
. “Math 557 – Cofinality”.[ y ]
02-07-2021
. “Math 557 – First-order languages”.[ y ]
02-08-2021
. “Math 557 – Properties of terms and formulas”.[ y ]
02-09-2021
. “Math 557 – Semantics of First-order Logic”.[ y ]
02-23-2021
. “Math 557 – Validities”.[ y ]
02-23-2021
. “Math 557 – Substitution”.[ y ]
02-23-2021
. “Math 557 – Logical Implication and Proof”.[ y ]
02-23-2021
. “Math 557 – Consistency and Completeness”.[ y ]
02-23-2021
. “Math 557 – The Completeness Theorem”.[ y ]
02-28-2021
. “Math 557 – Henkin Theories”.[ y ]
02-26-2021
. “Math 557 – Completing Theories”.[ y ]
03-02-2021
. “Math 557 — Proving the Model Existence Theorem”.[ y ]
03-06-2021
. “Math 557 - Elementary Equivalence”.[ y ]
03-08-2021
. “Math 557 – Elementary Substructures”.[ y ]
03-07-2021
. “Math 557 – The Löwenheim-Skolem Theorems”.[ y ]
03-13-2021
. “Math 557 – Quantifier Elimination”.[ y ]
03-16-2021
. “Math 557 – Quantifier Elimination for Algebraically Closed Fields”.[ y ]
03-20-2021
. “Math 557 – Turing Machines”.[ y ]
03-22-2021
. “Math 557 – Enumerating Turing Machines”.[ y ]
03-23-2021
. “Math 557 – Unsolvable Problems”.[ y ]
03-28-2021
. “Math 557 – Primitive recursive functions”.[ y ]
03-28-2021
. “Math 557 – The Ackermann function”.[ y ]
03-31-2021
. “Math 557 – Recursive Functions”.[ y ]
04-03-2021
. “Math 557 – Coding Formulas”.[ y ]
04-05-2021
. “Math 557 – Deciding Theories”.[ y ]
04-11-2021
. “Math 557 – Peano Arithmetic”.[ y ]
04-12-2021
. “Math 557 – Arithmetic Formulas”.[ y ]
04-13-2021
. “Math 557 – Defining Computable Functions in Arithmetic”.
Jan Reimann. MATH 574, Topics in Logic, Penn State, Spring 2014.
[ y ]
02-13-2015
. “Math 574, Introductory Lecture: three approaches to quantity of information”.[ y ]
02-13-2015
. “Math 574, Lesson 1-1: Strings”.[ y ]
02-13-2015
. “Math 574, Lesson 1-2: Sequence Spaces”.[ y ]
01-13-2014
. “Math 574, Lesson 1-3: Infinite paths through trees”.[ y ]
02-13-2015
. “Math 574, Lesson 1-4: Measure Spaces”.[ y ]
02-13-2015
. “Math 574, Lesson 1-5: Measures on Sequence Spaces”.[ y ]
02-13-2015
. “Math 574, Lesson 1-6: Stochastic Processes”.[ y ]
02-04-2014
. “Math 574, Lesson 2-1: Finite Automata”.[ y ]
02-09-2014
. “Math 574, Lesson 2-2: Turing Machines”.[ y ]
02-13-2015
. “Math 574, Lesson 2-3: Turing machines - an example”.[ y ]
02-13-2015
. “Math 574, Lesson 2-4: Computable Functions”.[ y ]
02-13-2015
. “Math 574. Lesson 2-5: The Halting Problem”.[ y ]
02-13-2015
. “Math 574, Lesson 2-6: Undecidability of the Halting Problem”.[ y ]
02-13-2015
. “Math 574, Lesson 3-1: Subshifts”.[ y ]
02-13-2015
. “Math 574, Lesson 3-2: Measurable Dynamics”.[ y ]
02-13-2015
. “Math 574, Lesson 3-3: Markov Shifts”.[ y ]
02-13-2015
. “Math 574, Lesson 3-3: Markov Shifts”.[ y ]
02-13-2015
. “Math 574, Lesson 3-4: Markov Chains”.[ y ]
02-13-2015
. “Math 574, Lesson 3-5: Ergodicity”.[ y ]
02-13-2015
. “Math 574, Lesson 3-6: The Ergodic Theorem”.[ y ]
02-13-2015
. “Math 574, Lesson 4-1: Information Measures”.[ y ]
02-13-2015
. “Math 574, Lesson 4-2: The Definition of Entropy”.[ y ]
02-13-2015
. “Math 574, Lesson 4-3: Kolmogorov Complexity”.[ y ]
02-13-2015
. “Math 574, Lesson 4-4: Prefix-free Complexity”.[ y ]
02-13-2015
. “Math 574, Lesson 4-5: Mutual Information”.[ y ]
02-13-2015
. “Math 574, Lesson 5-1: Optimal Codes”.
[ y ]
03-07-2024
All Angles. “How to unify logic & arithmetic”.
more
[ y ]
01-13-2024
. UCLA Automated Reasoning Group. “Beyond Truth & Falsehood: Logic as a Calculus of Events”.
Texts#
[ h ][ y ] Agler, David w. (2012). Symbolic Logic: Syntax, Semantics, and Proof. Rowman and Littlefield.
Andrews, Peter B. (2002). An Introduction to Mathematical Logic and Type Theory: To Truth Through Proof. Springer: Applied Logic Series.
Ayala-Rincón, Mauricio & Flávio L. C. de Moura. (2017). Applied Logic for Computer Scientists: Computational Deduction and Formal Proofs. Springer: Undergraduate Topics in Computer Science.
Ayer, Alfred J. (1952). Language, Turth, and Logic. Dover.
Boolos, George s.; John H. Burgess; & Richard C. Jeffrey. (2007). Computability and Logic. 5th Ed. Cambridge University Press.
Burgess, John P. (2012). Philosophical Logic. Princeton University Press.
Carroll, Lewis. (1958). Symbolic Logic and the Game of Logic. Dover.
Cellucci, Carlo. (2016). Rethinking Logic: Logic in Relation to Mathematics, Evolution, and Method. Springer.
Csirmaz, Laszlo & Zalán Gyenis. (2022). Mathematical Logic: Exercises and Solutions. Springer: Problem Books in Mathematics.
Dau, Frithjof. (2003). The Logic System of Concept Graphs with Negation: And Its Relationship to Predicate Logic. Springer: Lecture Notes in Computer Science.
De Swart, Harrie. (2018). Philosophical and Mathematical Logic. Springer Undergraduate Texts in Philosophy.
Enderton, Herbert B. (2001). A Mathematical Introduction to Logic. 2nd Ed. Academic Press.
Freund, Max A. (2019). The Logic of Sortals: A Conceptualist Approach. Springer: Synthese Library.
Gamut, L. T. F. (2020). Logic, Language, and Meaning, Vol. I: Introduction to Logic. University of Chicago Press.
Gamut, L. T. F. (2020). Logic, Language, and Meaning, Vol. II: Intensional Logic and Logical Grammar. University of Chicago Press.
Haack. Susan. (1978). Philosophy of Logics. Cambridge University Press.
Harrison, John. (2009). Handbook of Practical Logic and Automated Reasoning. Cambridge University Press.
Hitzler, Pascal & Anthony Seda. (2016). Mathematical Aspects of Logic Programming Semantics. CRC Press.
Iacona, Andrea. LOGIC: Lecture Notes for Philosophy, Mathematics, and Computer Science. Springer Undergraduate Texts in Philosophy.
Jongsma, Calvin. (2019). Introduction to Discrete Mathematics via Logic and Proof. Springer Undergraduate Texts in Mathematics.
Kac, Mark & Stanislaw M. Ulam. (1992). Mathematics and Logic. Dover.
Kripke, Saul. (1981). Naming and Necessity. Wiley-Blackwell.
[ b ] Leary, Christopher & Lars Kristiansen. (2015). A Friendly Introduction to Mathematical Logic. Milne Library.
Mates, Benson. Stoic Logic.
Mendelson, Elliot. (2015). Introduction to Mathematical Logic. CRC Press..
Milanic, Martin; Brigitte Servatius; & Herman Servatius. (2023). Discrete Mathematics with Logic. Acadmeic Press.
Nerode, Anil & Richard A. Shore. (1997). Logic for Applications. 2nd Ed. Springer: Graduate Texts in Computer Science.
Novaes, Catarina Dutilh. (2012). Formal Languages in Logic: A Philosophical and Congitive Analysis. Cambridge University Press.
Parry, William T. & Edward A. Hacker. (1991). Aristotelian Logic. SUNY Press.
Peregrin, Jaroslav. (2021). Philosophy of Logical Systems. Routledge Studies in Contemporary Philosophy.
Quine, Willard Van Orman. (1986). Philosophy of Logic. 2nd Ed. Harvard University Press.
Rini, Adriane. (2011). Aristotle’s Modal Proofs: Prior Analytics A8-22 in Predicate Logic. Springer: The New Synthese Historical Library.
Sider, Theodore. (2010). Logic for Philosophy. Oxford University Press.
Soames, Scott. (2012). Philosophy of Language. Princeton University Press.
Stillwell, John. (2022). The Story of Proof: Logic and the History of Mathematics. Princeton University Press.
Suppes, Patrick & Shirley Hill. (2010). First Course in Mathematical Logic. Dover.
Vingron, Shimon Peter. (2004). Switching Theory: Insight through Predicate Logic. Springer.
Wasilewska, Anita. (2018). Logics for Computer Science: Classical and Non-Classical. Springer.
Figures#
[ w ] Aristotle
[ w ][ s ] Boole, George (1815-1864)
[ w ] Cantor, Georg (1845-1918)
[ w ] Cantor’s First Set Theory Article
[ w ] Chrysippus of Soli
[ w ] Curry, Haskell (1900-1982)
[ w ] De Morgan, Augustus
[ w ] De Saussure, Ferdinand (1857-1913)
[ w ] Dedekind, Richard
[ w ] Dummett, Michael
[ w ] Fraenkel, Abraham (1891-1965)
[ w ] Gentzen, Gerhard (1909-1945)
[ w ][ s ] Gödel, Kurt
[ w ] Hintikka, Jaakko
[ w ] Huet, Gérard (1947-)
[ w ] Kripke, Saul
[ w ] Leibniz
[ s ] Leibniz’ Influence on 19th Century Logic
[ w ][ s ] Leśniewski, Stanisław (1886-1939)
[ w ] Lukasiewicz, Jan (1878-1956)
[ w ] Marcus, Ruth (1921-2012)
[ w ] Montague, Richard (1930-1971)
[ w ] Peano, Giuseppe
[ w ] (1889). Arithmetices principia, nova methodo exposita.
[ w ] Peirce, Charles Sanders
[ w ] Post, Emil (1897-1954)
[ w ] Prior, Arthur
[ w ] Russell, Bertrand
[ w ] (1905). “On Denoting”.
[ w ] Schonfinkel, Moses
[ w ] Sheffer, Henry (1882-1964)
[ w ][ s ] Tarski, Alfred (1901-1983)
[ s ] Tarski’s Truth Definitions
[ w ] Venn, John (1834-1923)
[ w ] Wittgenstein, Ludwig
[ w ] Zermelo, Ernst (1871-1953)
[ s ] Zermelo’s Axiomatization of Set Theory
Terms#
Formal Logic#
[ w ] Abduction
[ w ] Abjunction
[ w ] Abstract Rewriting System
[ w ] Aggrippan Trilemma
[ w ][ s ] Algebra
[ w ][ s ] Algebra of Logic
[ w ][ s ] Algebraic Propositional Logic
[ w ] Alphabet
[ w ] Ampliativity
[ w ][ s ] Analysis
[ w ][ s ] Ancient Logic
[ w ] Antecedent
[ w ] Argument
[ w ] Argumentation Theory
[ w ] Aristotelian Logic
[ w ] Arity
[ w ] Atomic Formula
[ w ] Atomic Sentence
[ w ] Axiom
[ w ] Axiom Schema
[ w ] Barcan Formula
[ w ] Biconditional
[ w ] Boolean Algebra
[ s ] Boolean Algebra, Mathematics
[ w ] Boolean Algebra Structure
[ w ] Boolean Function
[ w ] Buridan Formula
[ w ] Canonical Normal Form
[ w ] Cardinality
[ w ] Categorical Proposition
[ w ][ s ] Category Theory
[ w ] Combinational Logic
[ w ] Compactness Theorem
[ w ] Completeness
[ w ] Compound Proposition
[ w ] Comprehension
[ w ][ s ] Conditional
[ w ] Confluence
[ w ] Conjunction
[ w ] Conjunctive Normal Form
[ w ][ s ] Connexive Logic
[ w ] Connotation
[ w ] Consequent
[ w ] Consistency
[ w ] Constant Symbol
[ w ] Constructive Dilemma
[ w ] Contingency
[ w ] Contraposition
[ w ] Converse Conditional/Implication
[ w ] Converse Nonimplication
[ w ][ s ] Counterfactual
[ w ] Criteria of Truth
[ w ] Critical Thinking
[ w ] De Dicto
[ w ] De Morgan’s Laws
[ w ] De Re
[ w ] Deductive Reasoning
[ w ] Defeasible Reasoning
[ w ][ s ] Definition
[ w ] Denotation
[ w ] Deontic Logic
[ w ] Destructive Dilemma
[ w ] Diagonal Lemma
[ w ] Disjunction
[ w ] Disjunctive Normal Form
[ w ] Disjunctive Syllogism
[ w ] Domain of Discourse
[ w ] Enthymeme ἐνθύμημα
[ w ] Enumeration
[ w ] Equivocation
[ w ] Exclusive Disjunction
[ w ] Existential Generalization
[ w ] Existential Instantiation
[ w ] Existential Quantification
[ w ] Explicit Substitution
[ w ] Extension, Predicate Logic
[ w ] Extension, Semantics
[ w ] Extensionality
[ w ] Fallacy
[ w ] Falsity
[ w ] Falsum
[ w ] Finitarity
[ w ] First-Order Logic
[ w ] Formal Language
[ w ] Formal Proof
[ w ] Formal Semantics
[ w ] Formal System
[ w ] Formalism
[ w ] Formation Rule
[ w ] Formula, Closed
[ w ] Formula
[ w ] Formula, Open
[ w ] Free Object
[ w ] Frege’s Principle
[ w ] Function Symbol
[ w ] Functional Completeness
[ w ] Functional Predicate
[ w ][ s ] Future Contingent
[ w ][ s ] Fuzzy Logic
[ w ][ s ] Generalized Quantifier
[ w ] Gödel’s Completeness Theorems
[ w ] Gödel’s Incompleteness Theorems
[ w ] Ground Expression
[ w ] Herbrand Structure
[ w ] Heuristic
[ w ] Higher-Order Logic
[ w ] History of Logic
[ w ] Hypothetical Syllogism
[ w ][ s ] Identity of Indiscernibles
[ w ] If and only if
[ w ] Implication
[ w ] Inclusion
[ w ] Inclusive Disjunction
[ w ] Indian Logic
[ w ] Induction
[ w ] Inference
[ w ] Infinitarity
[ w ] Infinite Regress
[ w ] Infix Notation
[ w ] Informal Logic
[ w ] Intension
[ w ] Intensional Logic
[ w ] Interpretation, Logical
[ w ] Interpretation, Model-Theoretic
[ w ][ s ] Intuitionistic Logic
[ s ] The Development of Intuitionistic Logic
[ w ] Inverse
[ w ] Islamic Logic
[ w ] Justification
[ w ] Knowledge, definitions
[ w ] Law of Bivalence
[ w ] Law of Explosion
[ w ] Law of Excluded Middle
[ w ] Law of Identity
[ w ] Law of Non Contradiction
[ w ] Law of Thought
[ w ][ s ] Liar Paradox
[ w ][ s ] Linear Logic
[ w ] Logic
[ w ] Logica Nova
[ w ] Logical AND
[ w ] Logical Assertion
[ w ] Logical Atomism
[ w ] Logical Biconditional
[ w ] Logical Connective
[ w ] Logical Equivalence
[ w ] Logical Fallacy
[ w ] Logical Interpretation
[ w ] Logical NAND
[ w ] Logical NOR
[ w ] Logical NOT
[ w ] Logical Operation
[ w ] Logical OR
[ w ] Logical Positivism
[ w ] Logical Structure
[ w ] Logical Symbol
[ w ] Logical XNOR
[ w ] Logical XOR
[ w ][ s ] Logicism
[ w ] Material Biconditional
[ w ] Material Conditional/Implication
[ w ] Material Nonimplication
[ w ] Mathematical Constant
[ w ] Mathematical Expression
[ w ] Mathematical Induction
[ w ] Mathematical Language
[ w ] Mathematical Logic
[ w ] Mathematical Model
[ w ] Mathematical Structure
[ w ] Mathematical Variable
[ w ] Metalogic
[ w ] Metavariable
[ w ] Middle Term
-
[ s ] First Order Model Theory
[ w ] Modus Ponens
[ w ] Modus Tollens
[ w ] Montague Grammar
[ w ][ s ] Montague Semantics
[ w ] Natural Deduction
[ w ] Natural Number
[ w ] Necessity
[ w ] Non Logical Symbol
[ w ] Normal Form
[ w ] Operand
[ w ] Operation
[ w ][ s ] Paraconsistent Logic
[ w ] Particular
[ w ] Philosophical Logic
[ w ] Philosophy of Language
[ w ] Philosophy of Logic
[ w ][ s ] Plural Quantification
[ w ] Polish Notation
[ w ] Possible World
[ w ] Predicate
[ w ] Predicate, Grammatical
[ w ] Predicate Logic
[ w ] Predicate Variable
[ w ] Predication
[ w ] Premise
[ w ] Prenex Normal Form
[ w ] Principle of Compositionality
[ w ] Problem of the Criterion
[ w ] Problem of Future Contingents
[ w ] Problem of Universals
[ w ] Product Term
[ w ] Proof System
[ w ] Proof Theory
[ s ] Proof-Theoretic Semantics
[ w ] Proposition
[ w ] Propositional Formula
[ w ] Propositional Function
[ w ] Propositional Logic
[ w ] Propositional Variable
[ w ] Reason
[ w ] Recursion
[ w ] Recursive Definition
[ w ] Reduct
[ w ] Reductio ad absurdum
[ w ] Reduction System
[ w ][ s ] Reference
[ w ] Regress Argument
[ w ] Relation
[ w ] Relation, Finitary
[ w ] Resolution
[ w ] Rewriting
[ w ] Rule of Inference
[ w ][ s ] Russell’s Paradox
[ w ] Satisfiability
[ w ] Scope
[ w ][ s ] Self-Reference
[ w ] Sentence
[ w ] Sequence
[ w ] Sequent
[ w ] Sequent Calculus
[ w ] Sheffer Stroke
[ w ] Sign
[ w ] Signature
[ w ][ s ] Sorites Paradox
[ w ] Soundness
[ w ] Statement
[ w ] Stoic Logic
[ w ] String
[ w ] Structure
[ w ] Subject
[ w ] Subjunctive Possibility
[ w ] Substitution
[ w ][ s ] Substructural Logic
[ w ] Sufficiency
[ w ] Syllogism
[ s ] Medieval Theories of the Syllogism
[ w ] Syntax
[ w ][ s ] Synthesis
[ w ] Tautology ταυτολογία
[ w ] Term
[ w ] Term Algebra
[ w ] Term Logic
[ w ] Three-Valued Logic
[ w ] Transition System
[ w ] Truth
[ w ] Truth Table
[ w ] Truth Function
[ w ] Truth-Bearer
[ w ][ s ] Type Theory
[ s ] Intuitionistic Type Theory
[ w ] Unification
[ w ] Uninterpreted Function
[ w ] Universal
[ w ] Universal Algebra
[ w ] Universal Generalization
[ w ] Universal Instantiation
[ w ] Universal Quantification
[ w ] Vacuous Truth
[ w ][ s ] Vagueness
[ w ] Validity
[ w ] Valuation
[ w ] Variable, Bound
[ w ] Variable, Free
[ w ] Venn Diagram
[ w ] Verum
[ w ][ s ] Vienna Circle
[ w ] Well-Formed Formula (wff)
[ w ] Zeroth-Order Logic
Informal#
[ w ] Ad Hominem [argumentum ad hominem]
[ w ] Affirmative Conclusion from a Negative Premise
[ w ] Affirming the Consequent
[ w ] Affirming a Disjunct
[ w ] Appeal to Consequences [argumentum ad consequentiam]
[ w ] Appeal to Emotion [argumentum ad passiones]
[ w ] Appeal to Fear [argumentum ad metum, argumentum in terrorem]
[ w ] Appeal to Flattery [argumentum ad superbiam]
[ w ] Appeal to Pity [argumentum ad misericordiam]
[ w ] Appeal to Ridicule [argumentum ad absurdo]
[ w ] Appeal to Spite [argumentum ad odium]
[ w ] Argument from Authority, Appeal to Authority [argumentum ab auctoritate, argumentum ad verecundiam]
[ w ] Argument from Fallacy
[ w ] Argument from Ignorance, Appeal to Ignorance [argumentum ad ignorantiam]
[ w ] Argument from Silence [argumentum ex silentio]
[ w ] Begging the Question [petitio principii]
[ w ] Cherry Picking
[ w ] Circular Reasoning
[ w ] Cognitive Biases (list)
[ w ] Confusion of the Inverse
[ w ] Contextomy (quoting out of context)
[ w ] Denying the Antecedent
[ w ] Equivocation
[ w ] Fallacies (list)
[ w ] Fallacy of Composition
[ w ] Fallacy of Definition
[ w ] Fallacy of Division
[ w ] Fallacy of Four Terms
[ w ] Fallacy of the Single Cause
[ w ] Fallacy of the Undistributed Middle
[ w ] False Dilemma
[ w ] Faulty Generalization
[ w ] Formal Fallacy
[ w ] Illicit Major
[ w ] Illicit Minor
[ w ] Informal Fallacy
[ w ] Irrelevant Conclusion [ignoratio elenchi]
[ w ] Jumping to Conclusions
[ w ] Ludic Fallacy
[ w ] Mathematical Fallacy
[ w ] Principle of Charity
[ w ] Principle of Humanity
[ w ] Procatalepsis
[ w ] Red Herring
[ w ] Reification
[ w ] Slippery Slope
[ w ] Sorites Paradox
[ w ] Strawman
[ w ] Trivial Objection
[ w ] Wishful Thinking
Sets#
[ w ] Algebraic Number
[ w ] Axiom of Empty Set
[ w ] Axiom of Extensionality
[ w ] Axiom of Infinity
[ w ] Axiom of Power Set
[ w ] Cantor’s Diagonal Argument
[ w ] Cantor’s Theorem
[ w ] Cardinal Number
[ w ] Cardinality of the Continuum
[ w ] Cartesian Product
[ w ] Class
[ w ] Continuum
[ w ] Continuum Hypothesis
[ w ] Dedekind Cut
[ w ] Element
[ w ] Empty Set
[ w ] Equinumerosity
[ w ] Family
[ w ] Intension
[ w ] Mathematical Object
[ w ] Multiset
[ w ] Ordinal Arithmetic
[ w ] Ordinal Number
[ w ] Power Set
[ w ] Real Number
[ w ] Real Number, Decimal Representation
[ w ] Set
[ w ] Set, Countable
[ w ] Set, Infinite
[ w ] Set, Uncountable
[ w ] Set-Builder Notation
[ w ] Singleton
[ w ] Subset
[ w ] Successor Cardinal
[ w ] Successor Ordinal
[ w ] Transcendental Number
[ w ] Union
[ w ] Well-Order
[ w ] Zermelo Set Theory
[ w ] Zermelo-Fraenkel Set Theory
Arithmetic#
[ w ] Addition
[ w ] Arithmetic
[ w ] Difference
[ w ] Dividend
[ w ] Division
[ w ] Divisor
[ w ] Exponentiation
[ w ] Factor
[ w ] Function
[ w ] Function Notation
[ w ] Logarithm
[ w ] Mathematical Table
[ w ] Modulation
[ w ] Multiplicand
[ w ] Multiplication
[ w ] Multiplier
[ w ] Nth Root
[ w ] Product
[ w ] Quotient
[ w ] Remainder
[ w ] Subtraction
[ w ] Subtrahend
[ w ] Sum
[ w ] Summand
Automata and Computation#
Programming Languages#
Digital Logic#
Figures
Terms
[ w ] Adder
[ w ] Arithmetic Logic Unit
[ w ] Boolean Circuit
[ w ] Circuit Complexity
[ w ] Coincidence Circuit
[ w ] Combinational Logic
[ w ] Digital Electronics
[ w ] Encoder
[ w ] Flip-Flop
[ w ] Gray Code
[ w ] Hazard
[ w ] Karnaugh Map
[ w ] Ladder Logic
[ w ] Logic Gate
[ w ] Logic Optimization
[ w ] Multiplexer
[ w ] One-Hot
[ w ] Product of Sums (POS) Expression
[ w ] Relay Logic
[ w ] Sequential Logic
[ w ] Signal Propagation Delay
[ w ] Signalling Block System
[ w ] Subtractor
[ w ] Sum of Products (SOP) Expression
[ w ] Switching Circuit Theory