── Conflicts ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── tidyverse_conflicts() ──
✖dplyr::filter() masks stats::filter()
✖dplyr::lag() masks stats::lag()
ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
Registered S3 method overwritten by 'mosaic':
method from
fortify.SpatialPolygonsDataFrame ggplot2
The 'mosaic' package masks several functions from core packages in order to add
additional features. The original behavior of these functions should not be affected by this.
Attaching package: ‘mosaic’
The following object is masked from ‘package:Matrix’:
mean
The following objects are masked from ‘package:dplyr’:
count, do, tally
The following object is masked from ‘package:purrr’:
cross
The following object is masked from ‘package:ggplot2’:
stat
The following objects are masked from ‘package:stats’:
binom.test, cor, cor.test, cov, fivenum, IQR, median, prop.test,
quantile, sd, t.test, var
The following objects are masked from ‘package:base’:
max, mean, min, prod, range, sample, sum
nonGlyphReadyForm<-dcData::BabyNames%>%filter(name%in%c('Abraham','Franklin','Woodrow'))head(x=nonGlyphReadyForm)nonGlyphReadyForm%>%ggplot()+geom_line(alpha=0.5,linewidth=1,mapping=aes(x=year,y=count,color=name,linetype=name),position='identity',stat='identity',show.legend=TRUE)+xlab('Year')+ylab('Popularity')+ggtitle('Popularity of Names Over Time')
A data.frame: 6 × 4
name
sex
count
year
<chr>
<chr>
<int>
<int>
1
Franklin
M
120
1880
2
Abraham
M
81
1880
3
Franklin
M
117
1881
4
Abraham
M
86
1881
5
Franklin
M
112
1882
6
Abraham
M
91
1882
GlyphReadyForm<-dcData::BabyNames%>%filter(name%in%c('Abraham','Franklin','Woodrow'))%>%group_by(year,name)%>%summarize(total=sum(count))head(x=GlyphReadyForm)GlyphReadyForm%>%ggplot()+geom_line(alpha=0.5,linewidth=1,mapping=aes(x=year,y=total,color=name,linetype=name),position='identity',stat='identity',show.legend=TRUE)+xlab('Year')+ylab('Popularity')+ggtitle('Popularity of Names Over Time')
`summarise()` has grouped output by 'year'. You can override using the `.groups` argument.
A grouped_df: 6 × 3
year
name
total
<int>
<chr>
<int>
1880
Abraham
81
1880
Franklin
120
1881
Abraham
86
1881
Franklin
117
1882
Abraham
91
1882
Franklin
112
GlyphReadyForm<-dcData::BabyNames%>%filter(name%in%c('Dave','Davey','David'))%>%group_by(year,name)%>%summarize(total=sum(count))head(x=GlyphReadyForm)GlyphReadyForm%>%ggplot()+geom_line(alpha=0.5,linewidth=1,mapping=aes(x=year,y=total,color=name,linetype=name),position='identity',stat='identity',show.legend=TRUE)+xlab('Year')+ylab('Popularity')+ggtitle('Popularity of Names Over Time')
`summarise()` has grouped output by 'year'. You can override using the `.groups` argument.
A grouped_df: 6 × 3
year
name
total
<int>
<chr>
<int>
1880
Dave
131
1880
David
869
1881
Dave
135
1881
David
750
1882
Dave
144
1882
David
838
dcData::BabyNames%>%filter(name%in%c('Davey'))
A data.frame: 94 × 4
name
sex
count
year
<chr>
<chr>
<int>
<int>
Davey
M
5
1925
Davey
M
9
1928
Davey
M
89
1929
Davey
F
5
1930
Davey
M
54
1930
Davey
M
45
1931
Davey
M
26
1932
Davey
M
15
1933
Davey
M
22
1934
Davey
M
17
1935
Davey
M
9
1936
Davey
M
15
1937
Davey
M
14
1938
Davey
M
16
1939
Davey
M
8
1940
Davey
M
17
1941
Davey
M
18
1942
Davey
F
5
1943
Davey
M
19
1943
Davey
M
10
1944
Davey
M
15
1945
Davey
M
25
1946
Davey
M
37
1947
Davey
M
42
1948
Davey
M
50
1949
Davey
M
41
1950
Davey
M
39
1951
Davey
M
44
1952
Davey
M
74
1953
Davey
M
55
1954
⋮
⋮
⋮
⋮
Davey
M
29
1988
Davey
M
33
1989
Davey
M
20
1990
Davey
M
26
1991
Davey
M
26
1992
Davey
M
72
1993
Davey
F
5
1994
Davey
M
75
1994
Davey
M
34
1995
Davey
M
31
1996
Davey
M
34
1997
Davey
M
25
1998
Davey
M
28
1999
Davey
F
6
2000
Davey
M
14
2000
Davey
M
20
2001
Davey
M
29
2002
Davey
M
14
2003
Davey
M
14
2004
Davey
M
22
2005
Davey
F
5
2006
Davey
M
18
2006
Davey
M
25
2007
Davey
M
14
2008
Davey
M
14
2009
Davey
M
26
2010
Davey
M
19
2011
Davey
M
17
2012
Davey
F
7
2013
Davey
M
18
2013
GlyphReadyForm<-dcData::BabyNames%>%filter(name%in%c('Davey'))%>%group_by(year,name)%>%summarize(total=sum(count))head(x=GlyphReadyForm)GlyphReadyForm%>%ggplot()+geom_line(alpha=0.5,linewidth=1,mapping=aes(x=year,y=total,color=name,linetype=name),position='identity',stat='identity',show.legend=TRUE)+xlab('Year')+ylab('Popularity')+ggtitle('Popularity of Names Over Time')
`summarise()` has grouped output by 'year'. You can override using the `.groups` argument.
A grouped_df: 6 × 3
year
name
total
<int>
<chr>
<int>
1925
Davey
5
1928
Davey
9
1929
Davey
89
1930
Davey
59
1931
Davey
45
1932
Davey
26
GlyphReadyForm<-dcData::BabyNames%>%filter(name%in%c('Carol','Carole','Caroline','Carolyn','Carrie'))%>%group_by(year,name)%>%summarize(total=sum(count))head(x=GlyphReadyForm)GlyphReadyForm%>%ggplot()+geom_line(alpha=0.5,linewidth=1,mapping=aes(x=year,y=total,color=name,linetype=name),position='identity',stat='identity',show.legend=TRUE)+xlab('Year')+ylab('Popularity')+ggtitle('Popularity of Names Over Time')
`summarise()` has grouped output by 'year'. You can override using the `.groups` argument.
A grouped_df: 6 × 3
year
name
total
<int>
<chr>
<int>
1880
Carol
7
1880
Caroline
306
1880
Carolyn
80
1880
Carrie
957
1881
Carol
11
1881
Caroline
316
GlyphReadyForm<-dcData::BabyNames%>%filter(name%in%c('Jeff','Jeffrey','Geof','Geoff','Geoffrey'))%>%group_by(year,name)%>%summarize(total=sum(count))head(x=GlyphReadyForm)GlyphReadyForm%>%ggplot()+geom_line(alpha=0.5,linewidth=1,mapping=aes(x=year,y=total,color=name,linetype=name),position='identity',stat='identity',show.legend=TRUE)+xlab('Year')+ylab('Popularity')+ggtitle('Popularity of Names Over Time')
`summarise()` has grouped output by 'year'. You can override using the `.groups` argument.
A grouped_df: 6 × 3
year
name
total
<int>
<chr>
<int>
1880
Jeff
66
1881
Jeff
61
1882
Jeff
81
1883
Jeff
44
1884
Jeff
74
1885
Jeff
63
GlyphReadyForm<-dcData::BabyNames%>%filter(name%in%c('Geof','Geoff'))%>%group_by(year,name)%>%summarize(total=sum(count))head(x=GlyphReadyForm)GlyphReadyForm%>%ggplot()+geom_line(alpha=0.5,linewidth=1,mapping=aes(x=year,y=total,color=name,linetype=name),position='identity',stat='identity',show.legend=TRUE)+xlab('Year')+ylab('Popularity')+ggtitle('Popularity of Names Over Time')
`summarise()` has grouped output by 'year'. You can override using the `.groups` argument.
A grouped_df: 6 × 3
year
name
total
<int>
<chr>
<int>
1940
Geoff
5
1942
Geoff
7
1943
Geoff
5
1944
Geoff
8
1945
Geoff
8
1946
Geoff
7
GlyphReadyForm<-dcData::BabyNames%>%filter(name%in%c('Elizabeth','Elisa','Elise','Eliza','Ellie','Elsa','Isabelle','Lisa','Liz','Liza','Lizzie'))%>%group_by(year,name)%>%summarize(total=sum(count))head(x=GlyphReadyForm)GlyphReadyForm%>%ggplot()+geom_line(alpha=0.5,linewidth=1,mapping=aes(x=year,y=total,color=name,linetype=name),position='identity',stat='identity',show.legend=TRUE)+xlab('Year')+ylab('Popularity')+ggtitle('Popularity of Names Over Time')
`summarise()` has grouped output by 'year'. You can override using the `.groups` argument.
A grouped_df: 6 × 3
year
name
total
<int>
<chr>
<int>
1880
Elisa
5
1880
Elise
24
1880
Eliza
258
1880
Elizabeth
1948
1880
Ellie
17
1880
Elsa
20
GlyphReadyForm<-dcData::BabyNames%>%filter(name%in%c('Bethany','Bessie','Betsey','Betta','Betty'))%>%group_by(year,name)%>%summarize(total=sum(count))head(x=GlyphReadyForm)GlyphReadyForm%>%ggplot()+geom_line(alpha=0.5,linewidth=1,mapping=aes(x=year,y=total,color=name,linetype=name),position='identity',stat='identity',show.legend=TRUE)+xlab('Year')+ylab('Popularity')+ggtitle('Popularity of Names Over Time')
`summarise()` has grouped output by 'year'. You can override using the `.groups` argument.