Cylindrical Coordinates#

in \(\mathbb{R}^3\)

\( \boxed{ \begin{aligned} &z\text{-axis of rotational symmetry} \\ T&:(r,\theta,z)\mapsto(x,y,z) \\ T^{-1}&:(x,y,z)\mapsto(r,\theta,z) \\ T(r,\theta,z) &=(r\cos\theta,r\sin\theta,z) \\ &=(x(r,\theta,z),y(r,\theta,z),z(r,\theta,z)) &&\text{transformation} \\ \hline \\ x(r,\theta,z)&=r\cos\theta \\ y(r,\theta,z)&=r\sin\theta \\ z(r,\theta,z)&=z &&\text{transformation equations} \\ \hline \\ x^2+y^2&=r^2 &&\text{Pythagorean identity} \\ dV&=r\,dz\,dr\,d\theta &&\text{Jacobian} \end{aligned} } \boxed{ \begin{aligned} &y\text{-axis} \\ T&:(r,\theta,y)\mapsto(x,y,z) \\ T^{-1}&:(x,y,z)\mapsto(r,\theta,y) \\ T(r,\theta,y) &=(r\sin\theta,y,r\cos\theta,) \\ &=(x(r,\theta,y),y(r,\theta,y),z(r,\theta,y)) \\ \hline \\ x(r,\theta,y)&=r\sin\theta \\ y(r,\theta,y)&=y \\ z(r,\theta,y)&=r\cos\theta \\ \hline \\ x^2+z^2&=r^2 \\ dV&=r\,dy\,dr\,d\theta \end{aligned} } \boxed{ \begin{aligned} &x\text{-axis} \\ T&:(r,\theta,x)\mapsto(x,y,z) \\ T^{-1}&:(x,y,z)\mapsto(r,\theta,x) \\ T(r,\theta,x) &=(x,r\cos\theta,r\sin\theta) \\ &=(x(r,\theta,x),y(r,\theta,x),z(r,\theta,x)) \\ \hline \\ x(r,\theta,x)&=x \\ y(r,\theta,x)&=r\cos\theta \\ z(r,\theta,x)&=r\sin\theta \\ \hline \\ y^2+z^2&=r^2 \\ dV&=r\,dx\,dr\,d\theta \end{aligned} } \)


Revised

02 Apr 2023


Cylindrical Coordinate System#

Cylindrical coordinates are good to use for regions with a single axis of rotational symmetry.

In other words, one of the cross sections of the region is circular and the other ones aren’t.

  • Circular Cylinders

  • Cones

  • Elliptic Paraboloids

  • Hyperboloids

We might think of the cylindrical coordinate system as a set of stacked polar coordinate systems indexed by \(z\).


Transformation Equations \((x,y,z)\leftrightarrow(r,\theta,z)\)#

Infinitesimals#

\(dr\,d\theta\,dz\)-voxels in the rectangular \(r\theta z\)-grid are transformed into 3D wedges \(dV\) in the cylindrical \(xyz\)-grid.

\( \begin{aligned} dV\ne dr\,d\theta\,dz \end{aligned} \)

How big is cylindrical \(dV\) in relation to rectangular \(dr\,d\theta\,dz\)-voxel?

The further the \(dr\,d\theta\,dz\)-voxel is in the \(r\)-direction in the rectangular \(r\theta z\)-grid the larger the 3D wedge \(dV\) is in the cylindrical \(xyz\)-grid.

\( \begin{aligned} dV=r\,dr\,d\theta\,dz &&\text{from the Jacobian} \end{aligned} \)

Jacobian#

\( \begin{aligned} \frac{\partial(x,y,z)}{\partial(r,\theta,z)} =\begin{vmatrix} \dfrac{\partial x}{\partial r} & \dfrac{\partial x}{\partial \theta} & \dfrac{\partial x}{\partial z} \\\\ \dfrac{\partial y}{\partial r} & \dfrac{\partial y}{\partial \theta} & \dfrac{\partial y}{\partial z} \\\\ \dfrac{\partial z}{\partial r} & \dfrac{\partial z}{\partial \theta} & \dfrac{\partial z}{\partial z} \end{vmatrix} =\begin{vmatrix} \cos\theta & -r\sin\theta & 0 \\\\ \sin\theta & r\cos\theta & 0 \\\\ 0 & 0 & 1 \end{vmatrix} =\begin{vmatrix} \cos\theta & -r\sin\theta \\\\ \sin\theta & r\cos\theta \end{vmatrix} =r(\cos^2\theta+\sin^2\theta) =r \end{aligned} \)

\(z\)-axis Transformation Equations#

The following transformations take \(r,\theta,z\) as input.

\( \begin{aligned} r\ge0&\,\,\,\text{distance from the origin in the xy-plane} \\ 0\le\theta\le2\pi&\,\,\,\text{angle from the positive x-axis in the xy-plane} \\ z&\,\,\,\text{distance from the xy-plane} \end{aligned} \)

\( \begin{aligned} \text{polar}\,\,\, x(r,\theta,z)&=r\cos\theta \\ \text{polar}\,\,\, y(r,\theta,z)&=r\sin\theta \\ \text{rectangular}\,\,\, z(r,\theta,z)&=z \\ x^2+y^2&=r^2 \\ dV&=r\,dz\,dr\,d\theta \end{aligned} \)

Fixed \(r=k\) values produce concentric cylinders along the \(z\)-axis.

Fixed \(\theta=k\) values produce planes along the \(z\)-axis orthogonal to the \(xy\)-plane.

Fixed \(z=k\) values produce stacked planes parallel to the \(xy\)-plane orthogonal to the \(z\)-axis.

\(y\)-axis Transformation Equations#

The following transformations take \(r,\theta,z\) as input.

\( \begin{aligned} r\ge0&\,\,\,\text{distance from the origin in the xz-plane} \\ 0\le\theta\le2\pi&\,\,\,\text{angle from the positive z-axis in the xz-plane} \\ y&\,\,\,\text{distance from the xz-plane} \end{aligned} \)

\( \begin{aligned} \text{polar}\,\,\, x(r,\theta,y)&=r\sin\theta \\ \text{rectangular}\,\,\, y(r,\theta,y)&=y \\ \text{polar}\,\,\, z(r,\theta,y)&=r\cos\theta \\ x^2+z^2&=r^2 \\ dV&=r\,dy\,dr\,d\theta \end{aligned} \)

\(x\)-axis Transformation Equations#

The following transformations take \(r,\theta,z\) as input.

\( \begin{aligned} r\ge0&\,\,\,\text{distance from the origin in the yz-plane} \\ 0\le\theta\le2\pi&\,\,\,\text{angle from the positive y-axis in the yz-plane} \\ x&\,\,\,\text{distance from the yz-plane} \end{aligned} \)

\( \begin{aligned} \text{rectangular}\,\,\, x(r,\theta,x)&=x \\ \text{polar}\,\,\, y(r,\theta,x)&=r\cos\theta \\ \text{polar}\,\,\, z(r,\theta,x)&=r\sin\theta \\ y^2+z^2&=r^2 \\ dV&=r\,dx\,dr\,d\theta \end{aligned} \)


Examples#


[EXAMPLE]

An object occupies the region

\( R=\{0\le z\le9-x^2-y^2\} \)

and has density

\( \begin{aligned} \rho(x,y,z)=\frac{x^2z}{x^2+y^2} \,\,\,\text{g cm}^3 \end{aligned} \)

Calculate its mass.

Draw the region in \(\mathbb{R}^3\).

\( \begin{aligned} z&=0 &&xy\text{-plane} \\ z&=9-x^2-y^2 &&\text{elliptic paraboloid with z-intercept of 9 and concave down} \end{aligned} \)

Find the new bounds.

\( \begin{aligned} 0\le z\le9-x^2-y^2 \implies 0\le z\le9-r^2 \end{aligned} \)

\(0\le\theta\le2\pi\)

Project the domain onto the polar \(xy\)-plane to yield a circle of intersection \(r=3\).

\( 0=9-r^2 \implies r^2=9 \implies r=3 \,\,\,\text{where r is always nonnegative} \)

\( \begin{aligned} \text{mass}\,\,\, m &=\underset{R}{\iiint}\rho(x,y,z)\,dV =\underset{R}{\iiint}\frac{x^2z}{x^2+y^2}\,dx\,dy\,dz =\underset{R}{\iiint}\frac{(r\cos\theta)^2z}{r^2}\,r\,dz\,dr\,d\theta \\ &=\int_{\theta=0}^{\theta=2\pi}\int_{r=0}^{r=3}\int_{z=0}^{z=9-r^2}rz\cos^2\theta\,dz\,dr\,d\theta \\ &=\int_{\theta=0}^{\theta=2\pi}\cos^2\theta\,d\theta\int_{r=0}^{r=3}\int_{z=0}^{z=9-r^2}rz\,dz\,dr &&\text{by factoring} \\ &=\pi\int_{r=0}^{r=3}\int_{z=0}^{z=9-r^2}rz\,dz\,dr &&\pi=\int_{\theta=0}^{\theta=2\pi}\cos^2\theta\,d\theta \\ \end{aligned} \)


[EXAMPLE]

\( \begin{aligned} \underset{R}{\iiint}x^2y\,dV \,\,\,\text{where}\,\,\, R=\{x^2+z^2\le25,z\ge0,0\le y\le3\} \end{aligned} \)

Draw the region in \(\mathbb{R}^3\).

Half cylinder three units along the \(y\)-axis.

Find the new bounds.

\( 0\le y\le3 \)

\( \begin{aligned} z\le0 \implies r\cos\theta\le0 \implies \cos\theta\le0 \implies -\frac{\pi}{2}\le\theta\le\frac{\pi}{2} \end{aligned} \)

Project the domain onto the polar \(xz\)-plane to yield a semicircle of intersection \(r=5\).

\( x^2+z^2\le25 \implies r^2\le25 \implies r\le5 \,\,\,\text{where r is always nonnegative} \)

\( \begin{aligned} &\underset{R}{\iiint}x^2y\,dV =\underset{R}{\iiint}(r\sin\theta)^2y\,r\,dy\,dr\,d\theta =\underset{R}{\iiint}r^3y\sin^2\theta\,dy\,dr\,d\theta \\ &=\int_{\theta=-\frac{\pi}{2}}^{\theta=\frac{\pi}{2}}\int_{r=0}^{r=5}\int_{y=0}^{y=3}r^3y\sin^2\theta\,dy\,dr\,d\theta \end{aligned} \)


Terms#

  • [W] Cylindrical Coordinate System

  • [W] Determinant

  • [W] Jacobian