HW1

HW1#


Revised

Jan 2023


Imports & Environment#

Hide code cell source
# %load 'i.py'
import numpy                    as np
import numpy.random             as npr
import pandas                   as pd

import matplotlib               as mpl
from   matplotlib import cm
from   matplotlib.patches import Ellipse
import matplotlib.pyplot        as plt
plt.style.use('ggplot');
from   matplotlib.ticker import LinearLocator

import plotly
import plotly.express           as px
import plotly.graph_objects     as go

import sympy as sy
from   sympy.geometry import Point, Line
from   sympy import (diff,
                     dsolve,
                     Eq,
                     expand,
                     factor,
                     Function,
                     init_printing,
                     Integer,
                     Integral,
                     integrate,
                     latex,
                     limit,
                     Matrix,
                     Poly,
                     Rational,
                     solve,
                     Symbol,
                     symbols)

S =Symbol
ss=symbols
x,y,z,t,u,v=ss(names='x y z t u v')
init_printing(use_unicode=True)

import math
import numexpr

from   datetime import datetime as d
import locale                   as l
import platform                 as p
import sys                      as s

pad = 20
print(f"{'Executed'.upper():<{pad}}: {d.now()}")
print()
print(f"{'Platform'        :<{pad}}: "
      f"{p.mac_ver()[0]} | "
      f"{p.system()} | "
      f"{p.release()} | "
      f"{p.machine()}")
print(f"{''                :<{pad}}: {l.getpreferredencoding()}")
print()
print(f"{'Python'          :<{pad}}: {s.version}")
print(f"{''                :<{pad}}: {s.version_info}")
print(f"{''                :<{pad}}: {p.python_implementation()}")
print()
print(f"{'Matplotlib'      :<{pad}}: {mpl.__version__}")
print(f"{'Numexpr'         :<{pad}}: {numexpr.__version__}")
print(f"{'NumPy'           :<{pad}}: {np.__version__}")
print(f"{'Pandas'          :<{pad}}: {pd.__version__}")
print(f"{'Plotly'          :<{pad}}: {plotly.__version__}")
print(f"{'SymPy'           :<{pad}}: {sy.__version__}")
print()
from pprint import PrettyPrinter
pp = PrettyPrinter(indent=2)
pp.pprint([name for name in dir()
           if name[0] != '_'
           and name not in ['In', 'Out', 'exit', 'get_ipython', 'quit']])
---------------------------------------------------------------------------
ModuleNotFoundError                       Traceback (most recent call last)
Cell In[1], line 44
     41 init_printing(use_unicode=True)
     43 import math
---> 44 import numexpr
     46 from   datetime import datetime as d
     47 import locale                   as l

ModuleNotFoundError: No module named 'numexpr'

[1A]

SOLUTION

\( \begin{aligned} 16.3863 \approx \int_1^4\sqrt{4+\frac{1}{x^2}+4x^2}\,dx \end{aligned} \)

PROBLEM

\( \begin{aligned} \int_1^4\sqrt{4+\frac{1}{x^2}+4x^2}\,dx &=\int_1^4\sqrt{4x^2+4+\frac{1}{x^2}}\,dx\\ &=\int_1^4\sqrt{(2x)^2+2x\frac{1}{x}+2x\frac{1}{x}+\left(\frac{1}{x}\right)^2}\,dx\\ &=\int_1^4\sqrt{\left(2x+\frac{1}{x}\right)\left(2x+\frac{1}{x}\right)}\,dx\\ &=\int_1^4\sqrt{\left(2x+\frac{1}{x}\right)^2}\,dx\\ &=\int_1^4\left(2x+\frac{1}{x}\right)\,dx\\ &=2\int_1^4x\,dx+\int_1^4\frac{1}{x}\,dx\\ &=x^2\Big|_1^4+\ln(|x|)\Big|_1^4\\ &=15+\ln(4)\\ &\approx16.3863\\ \end{aligned} \)

15+np.log(4)
16.38629436111989
[1A]

SOLUTION

$
\begin{aligned}
16.3863
\approx
\int_1^4\sqrt{4+\frac{1}{x^2}+4x^2}\,dx
\end{aligned}
$

PROBLEM

$
\begin{aligned}
\int_1^4\sqrt{4+\frac{1}{x^2}+4x^2}\,dx
&=\int_1^4\sqrt{4x^2+4+\frac{1}{x^2}}\,dx\\
&=\int_1^4\sqrt{(2x)^2+2x\frac{1}{x}+2x\frac{1}{x}+\left(\frac{1}{x}\right)^2}\,dx\\
&=\int_1^4\sqrt{\left(2x+\frac{1}{x}\right)\left(2x+\frac{1}{x}\right)}\,dx\\
&=\int_1^4\sqrt{\left(2x+\frac{1}{x}\right)^2}\,dx\\
&=\int_1^4\left(2x+\frac{1}{x}\right)\,dx\\
&=2\int_1^4x\,dx+\int_1^4\frac{1}{x}\,dx\\
&=x^2\Big|_1^4+\ln(|x|)\Big|_1^4\\
&=15+\ln(4)\\
&\approx16.3863\\
\end{aligned}
$

[1B]

SOLUTION

\( \begin{aligned} 0.6095 \approx \int_0^1\sqrt{t^2+t^4}\,dt \end{aligned} \)

PROBLEM

\( \begin{aligned} \int_0^1\sqrt{t^2+t^4}\,dt &=\int_0^1\sqrt{t^2(1+t^2)}\,dt &=\int_0^1t\sqrt{1+t^2}\,dt\\ \end{aligned} \)

\( u=t^2+1\implies du=2t\,dt\implies\frac{du}{2t}=dt \)

\(t=0\implies u=(0)^2+1=1\)

\(t=1\implies u=(1)^2+1=2\)

\( \begin{aligned} =\int_1^2t\sqrt{u}\frac{du}{2t} &=\int_1^2\frac{t}{2t}\sqrt{u}\,du\\ &=\frac{1}{2}\int_1^2\sqrt{u}\,du\\ &=\frac{1}{3}u^\frac{3}{2}\Big|_1^2\\ &=\frac{1}{3}2^\frac{3}{2}-\frac{1}{3}\\ &\approx0.6095\\ \end{aligned} \)

(np.sqrt(8)-1)/3
0.6094757082487301
[1B]

SOLUTION

$
\begin{aligned}
0.6095
\approx
\int_0^1\sqrt{t^2+t^4}\,dt
\end{aligned}
$

PROBLEM

$
\begin{aligned}
\int_0^1\sqrt{t^2+t^4}\,dt
&=\int_0^1\sqrt{t^2(1+t^2)}\,dt
&=\int_0^1t\sqrt{1+t^2}\,dt\\
\end{aligned}
$

$
u=t^2+1\implies du=2t\,dt\implies\frac{du}{2t}=dt
$

$t=0\implies u=(0)^2+1=1$

$t=1\implies u=(1)^2+1=2$

$
\begin{aligned}
=\int_1^2t\sqrt{u}\frac{du}{2t}
&=\int_1^2\frac{t}{2t}\sqrt{u}\,du\\
&=\frac{1}{2}\int_1^2\sqrt{u}\,du\\
&=\frac{1}{3}u^\frac{3}{2}\Big|_1^2\\
&=\frac{1}{3}2^\frac{3}{2}-\frac{1}{3}\\
&\approx0.6095\\
\end{aligned}
$

[1C]

SOLUTION

\( \begin{aligned} \pi=\int_0^{2\pi}\cos^2(\theta)\,d\theta \end{aligned} \)

PROBLEM

\( \begin{aligned} \int_0^{2\pi}\cos^2(\theta)\,d\theta\,\,\,\text{where}\,\,\,\cos^2(\theta)=\frac{\cos(2\theta)+1}{2} \end{aligned} \)

\( \begin{aligned} =\int_0^{2\pi}\frac{\cos(2\theta)+1}{2}\,d\theta &=\frac{1}{2}\int_0^{2\pi}(\cos(2\theta)+1)\,d\theta\\ &=\frac{1}{2}\int_0^{2\pi}\cos(2\theta)\,d\theta+\frac{1}{2}\int_0^{2\pi}1\,d\theta\\ \end{aligned} \)

\(u=2\theta\implies du=2\,d\theta\implies\frac{du}{2}=d\theta\)

\(\theta=0\implies u=2(0)=0\)

\(\theta=2\pi\implies u=2(2\pi)=4\pi\)

\( \begin{aligned} =\frac{1}{2}\int_0^{4\pi}\cos(u)\frac{du}{2}+\frac{1}{2}\int_0^{4\pi}\frac{du}{2} &=\frac{1}{4}\int_0^{4\pi}\cos(u)\,du+\frac{1}{4}\int_0^{4\pi}\,du\\ &=\frac{1}{4}\sin(u)\Big|_0^{4\pi}+\frac{1}{4}u\Big|_0^{4\pi}\\ &=\pi\\ \end{aligned} \)

[1C]

SOLUTION

$
\begin{aligned}
\pi=\int_0^{2\pi}\cos^2(\theta)\,d\theta
\end{aligned}
$

PROBLEM

$
\begin{aligned}
\int_0^{2\pi}\cos^2(\theta)\,d\theta\,\,\,\text{where}\,\,\,\cos^2(\theta)=\frac{\cos(2\theta)+1}{2}
\end{aligned}
$

$
\begin{aligned}
=\int_0^{2\pi}\frac{\cos(2\theta)+1}{2}\,d\theta
&=\frac{1}{2}\int_0^{2\pi}(\cos(2\theta)+1)\,d\theta\\
&=\frac{1}{2}\int_0^{2\pi}\cos(2\theta)\,d\theta+\frac{1}{2}\int_0^{2\pi}1\,d\theta\\
\end{aligned}
$

$u=2\theta\implies du=2\,d\theta\implies\frac{du}{2}=d\theta$

$\theta=0\implies u=2(0)=0$

$\theta=2\pi\implies u=2(2\pi)=4\pi$

$
\begin{aligned}
=\frac{1}{2}\int_0^{4\pi}\cos(u)\frac{du}{2}+\frac{1}{2}\int_0^{4\pi}\frac{du}{2}
&=\frac{1}{4}\int_0^{4\pi}\cos(u)\,du+\frac{1}{4}\int_0^{4\pi}\,du\\
&=\frac{1}{4}\sin(u)\Big|_0^{4\pi}+\frac{1}{4}u\Big|_0^{4\pi}\\
&=\pi\\
\end{aligned}
$

[1D]

SOLUTION

\( \begin{aligned} \frac{2}{3} =\int_0^\frac{\pi}{2}\sin^3(x)\,dx \end{aligned} \)

PROBLEM

\( \begin{aligned} \int_0^\frac{\pi}{2}\sin^3(x)\,dx &=\int_0^\frac{\pi}{2}\sin^2(x)\sin(x)\,dx\,\,\,\text{where}\,\,\,\sin^2(x)=1-\cos^2(x)\\ &=\int_0^\frac{\pi}{2}(1-\cos^2(x))\sin(x)\,dx \end{aligned} \)

\(u=\cos(x)\implies du=-\sin(x)\,dx\implies-\frac{du}{\sin(x)}=dx\)

\(x=0\implies u=\cos(0)=1\)

\(x=\frac{\pi}{2}\implies u=\cos(\frac{\pi}{2})=0\)

\( \begin{aligned} =\int_1^0(1-u^2)\sin(x)\left(-\frac{du}{\sin(x)}\right) &=\int_1^0(u^2-1)\,du\\ &=\int_1^0u^2\,du-\int_1^01\,du\\ &=\frac{1}{3}u^3\Big|_1^0-u\Big|_1^0\\ &=\frac{2}{3} \end{aligned} \)

[1D]

SOLUTION

$
\begin{aligned}
\frac{2}{3}
=\int_0^\frac{\pi}{2}\sin^3(x)\,dx
\end{aligned}
$

PROBLEM

$
\begin{aligned}
\int_0^\frac{\pi}{2}\sin^3(x)\,dx
&=\int_0^\frac{\pi}{2}\sin^2(x)\sin(x)\,dx\,\,\,\text{where}\,\,\,\sin^2(x)=1-\cos^2(x)\\
&=\int_0^\frac{\pi}{2}(1-\cos^2(x))\sin(x)\,dx
\end{aligned}
$

$u=\cos(x)\implies du=-\sin(x)\,dx\implies-\frac{du}{\sin(x)}=dx$

$x=0\implies u=\cos(0)=1$

$x=\frac{\pi}{2}\implies u=\cos(\frac{\pi}{2})=0$

$
\begin{aligned}
=\int_1^0(1-u^2)\sin(x)\left(-\frac{du}{\sin(x)}\right)
&=\int_1^0(u^2-1)\,du\\
&=\int_1^0u^2\,du-\int_1^01\,du\\
&=\frac{1}{3}u^3\Big|_1^0-u\Big|_1^0\\
&=\frac{2}{3}
\end{aligned}
$