Dot Product#


Revised

10 Mar 2023


Dot Product#


Algebraic Definition#

To find the dot product of two vectors, we multiply corresponding components and add. The result of the dot product is not a vector, but a number called a scalar.

If a=a1,...,an and b=b1,...,bn, then the dot product of a and b is the number ab given by

ab=i=1naibi=a1b1+...+anbn

If a and b are interpreted as column vectors, the dot product can be written as a matrix product.

ab=ab=[a1an][b1bn]


Geometric Definition#

Let θ be the angle between the representations of a and b that start at the origin, where 0θπ.

In other words, let a and b be the line segments OA and OB, respectively.

ab=abcosθ

If a and b are parallel, then θ=0.

If a and b are antiparallel, then θ=π.

Proof

from the Law of Cosines

|AB|2=|OA|2+|OB|22|OA||OB|cosθ|ab|2=|a|2+|b|22|a||b|cosθ

|ab|2=(ab)(ab)=a(ab)b(ab)=aaabba+bb=|a|22ab+|b|2

|ab|2=|a|2+|b|22|a||b|cosθ|a|22ab+|b|2=|a|2+|b|22|a||b|cosθ2ab=2|a||b|cosθab=|a||b|cosθ


Corollary: the angle between two vectors#

If θ is the angle between the nonzero vectors a and b, then

cosθ=ab|a||b|


Properties of the Dot Product#


Dot Product of a vector with itself#

Let aRn be a vector.

aa=|a|2

Proof

aa=a1,...,ana1,...,an=a1a1+...+anan=a12+...+an2=(a12+...+an2)2=|a|2


Commutativity#

Let a,bRn be vectors.

ab=ba

Proof

ab=a1,...,anb1,...,bn=a1b1+...+anbn=b1a1+...+bnan=b1,...,bna1,...,an=ba


Distributivity over vector addition#

Let a,b,cRn be vectors.

a(b+c)=ab+ac

Proof

a(b+c)=a1,...,an(b1,...,bn+c1,...,cn)=a1,...,anb1+c1,...,bn+cn=a1(b1+c1)+...+an(bn+cn)=a1b1+a1c1+...+anbn+ancn=(a1b1+...+anbn)+(a1c1+...+ancn)=a1,...,anb1,...,bn+a1,...,anc1,...,cn=ab+ac


Scalar Multiplication#

Let a,bRn be vectors and cR a scalar.

(ca)b=c(ab)=a(cb)

Proof

(ca)b=(ca1,...,an)b1,...,bn=ca1,...,canb1,...,bn=ca1b1+...+canbn=c(a1b1+...+anbn)=c(a1,...,anb1,...,bn)=c(ab)=a1cb1+...+ancbn=a1,...,ancb1,...,cbn=a1,...,an(cb1,...,bn)=a(cb)


Dot Product with the zero vector#

Let aRn be a vector.

0a=0

Proof

0a=0,...,0a1,...,an=0a1+...+0an=0


Exercises#


2,43,1=23+41=64=2


1,7,46,2,12=16+72+412=6+142=6


(i+2j3k)(2jk)=10+22+31=4+3=7


Terms#

  • [W] Dot Product