Intro to binary codes C1, C2, C3

Intro to binary codes C1, C2, C3#

Hill, Raymond. (1986). A First Course in Coding Theory. Oxford University Press: Oxford Applied Mathematics and Computing Science Series.


Programming Environment#

Hide code cell source
import numpy  as np
import pandas as pd

import matplotlib        as mpl
import matplotlib.pyplot as plt
plt.style.use('ggplot');
plt.rcParams.update({'text.usetex' : True});
%matplotlib inline

from   collections import defaultdict
from   itertools   import combinations,product
import itertools

from typing import Set

from IPython.display import display, Math

from   datetime import datetime as d
import locale                   as l
import platform                 as p
import sys                      as s

pad = 20
print(f"{'Executed'.upper():<{pad}}: {d.now()}")
print()
print(f"{'Platform'   :<{pad}}: "
      f"{p.mac_ver()[0]} | "
      f"{p.system()} | "
      f"{p.release()} | "
      f"{p.machine()}")
print(f"{''           :<{pad}}: {l.getpreferredencoding()}")
print()
print(f"{'Python'     :<{pad}}: {s.version}")
print(f"{''           :<{pad}}: {s.version_info}")
print(f"{''           :<{pad}}: {p.python_implementation()}")
print()
print(f"{'Matplotlib' :<{pad}}: {mpl.__version__}")
print(f"{'NumPy'      :<{pad}}: {np .__version__}")
EXECUTED            : 2025-01-17 17:27:51.386243

Platform            : 15.2 | Darwin | 24.2.0 | arm64
                    : UTF-8

Python              : 3.11.11 | packaged by conda-forge | (main, Dec  5 2024, 14:21:42) [Clang 18.1.8 ]
                    : sys.version_info(major=3, minor=11, micro=11, releaselevel='final', serial=0)
                    : CPython

Matplotlib          : 3.9.3
NumPy               : 2.0.2
Hide code cell source
def rc (q : int,
        n : int) -> Set[str]:
  """Repetition Code
  Generate a q-ary repetition block code of length n.
  """
  S=set()
  for i in range(q):
    S.add(str(i)*n)
  return S

def fqn (q : int,
         n : int,
         g : int = 0) -> Set[str]:
  """Construct a linear space of dimension n over a finite field of order q.
  
  Parameters
  ==========
  g : If the space is very large, opt for the first g elements of a generator object.
  """
  if bool(g):
    f=itertools.product(range(q),repeat=n)
    return set(''.join(str(i) for i in next(f)) for _ in range(g))
  else:
    return {''.join(str(bit) for bit in word) for word in itertools.product(range(q),repeat=n)}

def qarycode_to_nbitstring (code={'3121','2101'},k=4):
  """Convert a q-ary code """
  for n in code:
    print(' '.join(format(int(i),f'0{k}b') for i in n))

def hd (a : str = '1001',
        b : str = '0101') -> int:
  """HAMMING DISTANCE
  
  Parameters
  ==========
  x : str
  y : str

  Return
  ======
  int
  """
  assert len(a) == len(b), 'x and y must have the same length'
  return sum(x!=y for x,y in zip(a,b))

def nbfmd (c  : Set[str],
           pr : bool = False) -> np.float16:
  """NAIVE BRUTE FORCE MINIMUM DISTANCE d(C)

  Computes the pairwise Hamming distance for all codewords and returns the minimum value.

  This is a naive (i.e., non vectorized) implementation using nested for loops.
  
  Parameters
  ==========
  c  : code
  pr : Print intermediate steps.

  Returns
  =======
  d(C)
  """

  # convert a set of string vectors to a 2D NumPy array of integers
  c=np.array([list(codeword) for codeword in c],dtype=np.float16)

  # intialize empty hamming distance matrix
  hamming = np.empty([c.shape[0]]*2,dtype=np.float16)
  for i,x in enumerate(c):
    for j,y in enumerate(c):
      hamming[i,j]=(x!=y).sum()
  # the diagonal represents the Hamming distance of a codeword with itself, which is always 0.
  np.fill_diagonal(hamming,np.inf)

  if pr == True:
    print(hamming)

  return hamming.min().astype(np.int8)

def one_error_detecting (q    : int,
                         code : Set[str],
                         p    : bool = False) -> bool:
  """Verify that a code is one-error detecting.
  No one-bit error equals a codeword.
  """
  flag=True
  alphabet=set(str(i) for i in range(q))
  for codeword in code:
    if p:
      print()
      print(f"{'orig cw : ':10}{codeword}")
    for i in range(len(codeword)):
      a,b,c=codeword[:i],codeword[i],codeword[i+1:]
      symbols=alphabet-set(codeword[i])
      for symbol in symbols:
        cw=codeword[:i]+symbol+codeword[i+1:] # SINGLE ERROR
        if cw in code:
          flag=False
          if p:
            print(f"{'ERROR':10}{cw}")
        else:
          if p:
            print(f"{'':10}{cw}")
  return flag

# set(''.join(l for l in i) for i in itertools.product('10',repeat=3))
# set(''.join(l for l in i) for i in itertools.combinations_with_replacement('012',r=3))
# set(''.join(l for l in i) for i in itertools.combinations('01',r=2))

[EXAMPLE]

HQ and X have identical maps but only HQ knows the route by which X can avoid enemy territory and return to HQ safely.

HQ can transmit binary data to X and wishes to send the route \(\text{NNWNNWWSSWWNNNNWWN}\).

In this situation, reliability or transmission is more important than speed of transmission.

The most efficient code is

\( C_1= \begin{cases} 00&=\text{N}\\ 01&=\text{W}\\ 10&=\text{E}\\ 11&=\text{S}\\ \end{cases} \)

However, if one or more errors have occurred there is no way for X to know.

c1 ={'00','01','10','11'}
f22=fqn(2,2)
c1.issubset(f22)
True

Let’s add a redundant bit to each codeword to protect them against noise.

A less efficient but more reliable code than \(C_1\) is

\( C_2= \begin{cases} 000&=\text{N}\\ 011&=\text{W}\\ 101&=\text{E}\\ 110&=\text{S}\\ \end{cases} \)

A single error in the received vector cannot be a codeword and so \(C_2\) is single-error-detecting.

X can recognize whether a single error has occurred and seek retransmission.

c2 ={'000','011','101','110'}
f23=fqn(2,3)
c2.issubset(f23)
True
one_error_detecting(2,c2)
True

Suppose X can receive binary data from HQ but cannot seek retransmission.

A less efficient but more reliable code than \(C_2\) is

\( C_3= \begin{cases} 00000&=\text{N}\\ 01101&=\text{W}\\ 10110&=\text{E}\\ 11011&=\text{S}\\ \end{cases} \)

A single error in the received vector cannot be a codeword and so \(C_2\) is single-error-detecting.

X can recognize whether a single error has occurred and seek retransmission.

c3 ={'00000','01101','10110','11011'}
f25=fqn(2,5)
c3.issubset(f25)
True
one_error_detecting(2,c3,True)
orig cw : 00000
          10000
          01000
          00100
          00010
          00001

orig cw : 01101
          11101
          00101
          01001
          01111
          01100

orig cw : 10110
          00110
          11110
          10010
          10100
          10111

orig cw : 11011
          01011
          10011
          11111
          11001
          11010
True

C1#

\( \begin{aligned} &(2,4,1)\text{-code} \\ C_{1,[4\times2]}&= \begin{cases} 00&=\text{N}\\ 01&=\text{W}\\ 10&=\text{E}\\ 11&=\text{S}\\ \end{cases} \end{aligned} \)

\( \begin{aligned} q&=2 \\ Z_q&=\{0,1\} \\ C_{1} &\subseteq(F_2)^2 \\ n&=2 \\ M&=4 \\ d(C)&=1 \\ d(C)&\ge1=(s=0)+1 &&\text{zero-error detecting} \\ d(C)&\ge1=2(t=0)+1 &&\text{zero-error correcting} \end{aligned} \)

c1={'00','01','10','11'}
c1
{'00', '01', '10', '11'}
q=2
n=2
f1=fqn(q,n)
f1
{'00', '01', '10', '11'}
c1.issubset(f1)
True
dC1=nbfmd(c1,True)
dC1
[[inf  1.  1.  2.]
 [ 1. inf  2.  1.]
 [ 1.  2. inf  1.]
 [ 2.  1.  1. inf]]
np.int8(1)

C2#

\( \begin{aligned} &(3,4,2)\text{-code} \\ C_{2,[4\times3]}&= \begin{cases} 000&=\text{N}\\ 011&=\text{W}\\ 101&=\text{E}\\ 110&=\text{S}\\ \end{cases} \end{aligned} \)

\( \begin{aligned} q&=2 \\ Z_q&=\{0,1\} \\ C_{2} &\subseteq(F_2)^3 \\ n&=3 \\ M&=4 \\ d(C)&=2 \\ d(C)&\ge2=(s=1)+1 &&\text{one-error detecting} \\ d(C)&\ge2=2(t=0.5)+1 &&\text{zero-error correcting} \end{aligned} \)

c2={'000','011','101','110'}
c2
{'000', '011', '101', '110'}
q=2
n=3
f2=fqn(q,n)
f2
{'000', '001', '010', '011', '100', '101', '110', '111'}
c2.issubset(f2)
True
dC2=nbfmd(c2,True)
dC2
[[inf  2.  2.  2.]
 [ 2. inf  2.  2.]
 [ 2.  2. inf  2.]
 [ 2.  2.  2. inf]]
np.int8(2)

C3#

\( \begin{aligned} &(5,4,3)\text{-code} \\ C_{3,[4\times5]}&= \begin{cases} 00000&=\text{N}\\ 01101&=\text{W}\\ 10110&=\text{E}\\ 11011&=\text{S}\\ \end{cases} \end{aligned} \)

\( \begin{aligned} q&=2 \\ Z_q&=\{0,1\} \\ C_{3} &\subseteq(F_2)^5 \\ n&=5 \\ M&=4 \\ d(C)&=3 \\ d(C)&\ge3=(s=2)+1 &&\text{two-error detecting} \\ d(C)&\ge3=2(t=1)+1 &&\text{one-error correcting} \end{aligned} \)

c3={'00000','01101','10110','11011'}
c3
{'00000', '01101', '10110', '11011'}
q=2
n=5
f3=fqn(q,n)
f3
{'00000',
 '00001',
 '00010',
 '00011',
 '00100',
 '00101',
 '00110',
 '00111',
 '01000',
 '01001',
 '01010',
 '01011',
 '01100',
 '01101',
 '01110',
 '01111',
 '10000',
 '10001',
 '10010',
 '10011',
 '10100',
 '10101',
 '10110',
 '10111',
 '11000',
 '11001',
 '11010',
 '11011',
 '11100',
 '11101',
 '11110',
 '11111'}
c3.issubset(f3)
True
dC3=nbfmd(c3,True)
dC3
[[inf  3.  3.  4.]
 [ 3. inf  4.  3.]
 [ 3.  4. inf  3.]
 [ 4.  3.  3. inf]]
np.int8(3)

Equivalent codes

\( \begin{aligned} C= \begin{cases} 00100\\ 00011\\ 11111\\ 11000\\ \end{cases} \,\,\,\,\, \underset{p_3}{ \left( \begin{matrix} 0&1\\ \downarrow&\downarrow\\ 1&0\\ \end{matrix} \right) } \,\,\,\,\, C= \begin{cases} 00000\\ 00111\\ 11011\\ 11100\\ \end{cases} \,\,\,\,\, \left( \begin{matrix} p_2&p_4\\ \downarrow&\downarrow\\ p_4&p_2\\ \end{matrix} \right) \,\,\,\,\, C_3= \begin{cases} 00000\\ 01101\\ 11011\\ 10110\\ \end{cases} \end{aligned} \)