Sieve of Eratosthenes#
Programming Environment#
import math
#from numba import jit, njit, prange
import numpy as np
from typing import Iterator
def generate_integers (start : int = 0) -> Iterator[int]:
n = start
while True:
yield n
n += 1
num = generate_integers()
print(list(next(num) for _ in range(25)))
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24]
next(num)
25
Naive Python#
def p0 (p : int,
flag : bool = False) -> list[int]:
num = generate_integers(2)
arr = list(next(num) for _ in range(2, p + 1))
primes = []
prime = arr.pop(0) # remove the first number in the array of numbers
primes.append(prime) # add it to our list of primes
while prime <= p ** 0.5:
if flag:
print(prime, arr)
arr = list(i for i in arr if i % primes[-1] != 0) # remove all prime multiples from the array:
prime = arr.pop(0)
primes.append(prime)
primes += arr
return primes
%timeit p0(int(1e2))
%timeit p0(int(1e3))
%timeit p0(int(1e6))
15.6 µs ± 62.2 ns per loop (mean ± std. dev. of 7 runs, 100,000 loops each)
210 µs ± 1.19 µs per loop (mean ± std. dev. of 7 runs, 1,000 loops each)
1.02 s ± 20.3 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
p0(int(1e6))
[2,
3,
5,
7,
11,
13,
17,
19,
23,
29,
31,
37,
41,
43,
47,
53,
59,
61,
67,
71,
73,
79,
83,
89,
97,
101,
103,
107,
109,
113,
127,
131,
137,
139,
149,
151,
157,
163,
167,
173,
179,
181,
191,
193,
197,
199,
211,
223,
227,
229,
233,
239,
241,
251,
257,
263,
269,
271,
277,
281,
283,
293,
307,
311,
313,
317,
331,
337,
347,
349,
353,
359,
367,
373,
379,
383,
389,
397,
401,
409,
419,
421,
431,
433,
439,
443,
449,
457,
461,
463,
467,
479,
487,
491,
499,
503,
509,
521,
523,
541,
547,
557,
563,
569,
571,
577,
587,
593,
599,
601,
607,
613,
617,
619,
631,
641,
643,
647,
653,
659,
661,
673,
677,
683,
691,
701,
709,
719,
727,
733,
739,
743,
751,
757,
761,
769,
773,
787,
797,
809,
811,
821,
823,
827,
829,
839,
853,
857,
859,
863,
877,
881,
883,
887,
907,
911,
919,
929,
937,
941,
947,
953,
967,
971,
977,
983,
991,
997,
1009,
1013,
1019,
1021,
1031,
1033,
1039,
1049,
1051,
1061,
1063,
1069,
1087,
1091,
1093,
1097,
1103,
1109,
1117,
1123,
1129,
1151,
1153,
1163,
1171,
1181,
1187,
1193,
1201,
1213,
1217,
1223,
1229,
1231,
1237,
1249,
1259,
1277,
1279,
1283,
1289,
1291,
1297,
1301,
1303,
1307,
1319,
1321,
1327,
1361,
1367,
1373,
1381,
1399,
1409,
1423,
1427,
1429,
1433,
1439,
1447,
1451,
1453,
1459,
1471,
1481,
1483,
1487,
1489,
1493,
1499,
1511,
1523,
1531,
1543,
1549,
1553,
1559,
1567,
1571,
1579,
1583,
1597,
1601,
1607,
1609,
1613,
1619,
1621,
1627,
1637,
1657,
1663,
1667,
1669,
1693,
1697,
1699,
1709,
1721,
1723,
1733,
1741,
1747,
1753,
1759,
1777,
1783,
1787,
1789,
1801,
1811,
1823,
1831,
1847,
1861,
1867,
1871,
1873,
1877,
1879,
1889,
1901,
1907,
1913,
1931,
1933,
1949,
1951,
1973,
1979,
1987,
1993,
1997,
1999,
2003,
2011,
2017,
2027,
2029,
2039,
2053,
2063,
2069,
2081,
2083,
2087,
2089,
2099,
2111,
2113,
2129,
2131,
2137,
2141,
2143,
2153,
2161,
2179,
2203,
2207,
2213,
2221,
2237,
2239,
2243,
2251,
2267,
2269,
2273,
2281,
2287,
2293,
2297,
2309,
2311,
2333,
2339,
2341,
2347,
2351,
2357,
2371,
2377,
2381,
2383,
2389,
2393,
2399,
2411,
2417,
2423,
2437,
2441,
2447,
2459,
2467,
2473,
2477,
2503,
2521,
2531,
2539,
2543,
2549,
2551,
2557,
2579,
2591,
2593,
2609,
2617,
2621,
2633,
2647,
2657,
2659,
2663,
2671,
2677,
2683,
2687,
2689,
2693,
2699,
2707,
2711,
2713,
2719,
2729,
2731,
2741,
2749,
2753,
2767,
2777,
2789,
2791,
2797,
2801,
2803,
2819,
2833,
2837,
2843,
2851,
2857,
2861,
2879,
2887,
2897,
2903,
2909,
2917,
2927,
2939,
2953,
2957,
2963,
2969,
2971,
2999,
3001,
3011,
3019,
3023,
3037,
3041,
3049,
3061,
3067,
3079,
3083,
3089,
3109,
3119,
3121,
3137,
3163,
3167,
3169,
3181,
3187,
3191,
3203,
3209,
3217,
3221,
3229,
3251,
3253,
3257,
3259,
3271,
3299,
3301,
3307,
3313,
3319,
3323,
3329,
3331,
3343,
3347,
3359,
3361,
3371,
3373,
3389,
3391,
3407,
3413,
3433,
3449,
3457,
3461,
3463,
3467,
3469,
3491,
3499,
3511,
3517,
3527,
3529,
3533,
3539,
3541,
3547,
3557,
3559,
3571,
3581,
3583,
3593,
3607,
3613,
3617,
3623,
3631,
3637,
3643,
3659,
3671,
3673,
3677,
3691,
3697,
3701,
3709,
3719,
3727,
3733,
3739,
3761,
3767,
3769,
3779,
3793,
3797,
3803,
3821,
3823,
3833,
3847,
3851,
3853,
3863,
3877,
3881,
3889,
3907,
3911,
3917,
3919,
3923,
3929,
3931,
3943,
3947,
3967,
3989,
4001,
4003,
4007,
4013,
4019,
4021,
4027,
4049,
4051,
4057,
4073,
4079,
4091,
4093,
4099,
4111,
4127,
4129,
4133,
4139,
4153,
4157,
4159,
4177,
4201,
4211,
4217,
4219,
4229,
4231,
4241,
4243,
4253,
4259,
4261,
4271,
4273,
4283,
4289,
4297,
4327,
4337,
4339,
4349,
4357,
4363,
4373,
4391,
4397,
4409,
4421,
4423,
4441,
4447,
4451,
4457,
4463,
4481,
4483,
4493,
4507,
4513,
4517,
4519,
4523,
4547,
4549,
4561,
4567,
4583,
4591,
4597,
4603,
4621,
4637,
4639,
4643,
4649,
4651,
4657,
4663,
4673,
4679,
4691,
4703,
4721,
4723,
4729,
4733,
4751,
4759,
4783,
4787,
4789,
4793,
4799,
4801,
4813,
4817,
4831,
4861,
4871,
4877,
4889,
4903,
4909,
4919,
4931,
4933,
4937,
4943,
4951,
4957,
4967,
4969,
4973,
4987,
4993,
4999,
5003,
5009,
5011,
5021,
5023,
5039,
5051,
5059,
5077,
5081,
5087,
5099,
5101,
5107,
5113,
5119,
5147,
5153,
5167,
5171,
5179,
5189,
5197,
5209,
5227,
5231,
5233,
5237,
5261,
5273,
5279,
5281,
5297,
5303,
5309,
5323,
5333,
5347,
5351,
5381,
5387,
5393,
5399,
5407,
5413,
5417,
5419,
5431,
5437,
5441,
5443,
5449,
5471,
5477,
5479,
5483,
5501,
5503,
5507,
5519,
5521,
5527,
5531,
5557,
5563,
5569,
5573,
5581,
5591,
5623,
5639,
5641,
5647,
5651,
5653,
5657,
5659,
5669,
5683,
5689,
5693,
5701,
5711,
5717,
5737,
5741,
5743,
5749,
5779,
5783,
5791,
5801,
5807,
5813,
5821,
5827,
5839,
5843,
5849,
5851,
5857,
5861,
5867,
5869,
5879,
5881,
5897,
5903,
5923,
5927,
5939,
5953,
5981,
5987,
6007,
6011,
6029,
6037,
6043,
6047,
6053,
6067,
6073,
6079,
6089,
6091,
6101,
6113,
6121,
6131,
6133,
6143,
6151,
6163,
6173,
6197,
6199,
6203,
6211,
6217,
6221,
6229,
6247,
6257,
6263,
6269,
6271,
6277,
6287,
6299,
6301,
6311,
6317,
6323,
6329,
6337,
6343,
6353,
6359,
6361,
6367,
6373,
6379,
6389,
6397,
6421,
6427,
6449,
6451,
6469,
6473,
6481,
6491,
6521,
6529,
6547,
6551,
6553,
6563,
6569,
6571,
6577,
6581,
6599,
6607,
6619,
6637,
6653,
6659,
6661,
6673,
6679,
6689,
6691,
6701,
6703,
6709,
6719,
6733,
6737,
6761,
6763,
6779,
6781,
6791,
6793,
6803,
6823,
6827,
6829,
6833,
6841,
6857,
6863,
6869,
6871,
6883,
6899,
6907,
6911,
6917,
6947,
6949,
6959,
6961,
6967,
6971,
6977,
6983,
6991,
6997,
7001,
7013,
7019,
7027,
7039,
7043,
7057,
7069,
7079,
7103,
7109,
7121,
7127,
7129,
7151,
7159,
7177,
7187,
7193,
7207,
7211,
7213,
7219,
7229,
7237,
7243,
7247,
7253,
7283,
7297,
7307,
7309,
7321,
7331,
7333,
7349,
7351,
7369,
7393,
7411,
7417,
7433,
7451,
7457,
7459,
7477,
7481,
7487,
7489,
7499,
7507,
7517,
7523,
7529,
7537,
7541,
7547,
7549,
7559,
7561,
7573,
7577,
7583,
7589,
7591,
7603,
7607,
7621,
7639,
7643,
7649,
7669,
7673,
7681,
7687,
7691,
7699,
7703,
7717,
7723,
7727,
7741,
7753,
7757,
7759,
7789,
7793,
7817,
7823,
7829,
7841,
7853,
7867,
7873,
7877,
7879,
7883,
7901,
7907,
7919,
...]
n = int(1e8)
%time sieve = [True] * n
%time sieve = [True for _ in range(n)]
CPU times: user 20.1 ms, sys: 50.7 ms, total: 70.8 ms
Wall time: 71.9 ms
CPU times: user 1.3 s, sys: 127 ms, total: 1.43 s
Wall time: 1.46 s
# def sieve_of_eratosthenes (n):
# sieve = [True] * n
# sieve[0:1] = [False, False]
# for prime in range(2, n + 1):
# if sieve[prime]:
# for i in range(2*prime, n+1, prime):
# sieve[i] = False
# def p1 (n):
# sieve = [True] * n
# p = 2
# while (p*p <= n):
# if (sieve[p] == True):
# for i in range(p*p, n+1, p):
# sieve[i] = False
# p += 1
# for p in range(2, n+1):
# if sieve[p]:
# p
# %timeit p1(int(1e2))
# %timeit p1(int(1e3))
# %timeit p1(int(1e6))
# %timeit p1(int(1e7))
\[\begin{split}
\begin{align*}
n = 3 && 9 + 6k = 9, 15, 21, 27, 33, 39, 45, 51, 57, 63, 69, 75, 81, 87, 93, 99 \\
n = 5 && 25 + 10k = 25, 35, 45, 55, 65, 75, 85, 95 \\
n = 7 && 49 + 14k = 49, 63, 77, 91 \\
n = 11 && 121 + 22k = \dots \\
\end{align*}
\end{split}\]
\( \begin{aligned} & 3^2 + 2.3k = 3(2k + 3) = \phantom{1} 6k + \phantom{1} 9 = \phantom{1} 6(k + 1) + \phantom{1} 3 = 3(2k' + 1) && \text{odd multiples of 3} \\ & 5^2 + 2.5k = 5(2k + 5) = 10k + 25 = 10(k + 2) + \phantom{1} 5 = 5(2k' + 1) && \text{odd multiples of 5 but not 3} \\ & 7^2 + 2.7k = 7(2k + 7) = 14k + 49 = 14(k + 3) + \phantom{1} 7 = 7(2k' + 1) && \text{odd multiples of 7 but not 3, 5} \\ \end {aligned} \)
# FULL SIEVE
n = 100
sieve = [True] * n
for i in range(3, int(n ** 0.5) + 1, 2):
if sieve[i]:
sieve[i*i::2*i] = [False] * ((n - i * i - 1) // (2 * i) + 1)
print(i, len(np.flatnonzero(sieve)), np.flatnonzero(sieve))
print([2] + [i for i in range(3, n, 2) if sieve[i]])
3
84 [ 0 1 2 3 4 5 6 7 8 10 11 12 13 14 16 17 18 19 20 22 23 24 25 26
28 29 30 31 32 34 35 36 37 38 40 41 42 43 44 46 47 48 49 50 52 53 54 55
56 58 59 60 61 62 64 65 66 67 68 70 71 72 73 74 76 77 78 79 80 82 83 84
85 86 88 89 90 91 92 94 95 96 97 98]
5 78 [ 0 1 2 3 4 5 6 7 8 10 11 12 13 14 16 17 18 19 20 22 23 24 26 28
29 30 31 32 34 36 37 38 40 41 42 43 44 46 47 48 49 50 52 53 54 56 58 59
60 61 62 64 66 67 68 70 71 72 73 74 76 77 78 79 80 82 83 84 86 88 89 90
91 92 94 96 97 98]
7 75 [ 0 1 2 3 4 5 6 7 8 10 11 12 13 14 16 17 18 19 20 22 23 24 26 28
29 30 31 32 34 36 37 38 40 41 42 43 44 46 47 48 50 52 53 54 56 58 59 60
61 62 64 66 67 68 70 71 72 73 74 76 78 79 80 82 83 84 86 88 89 90 92 94
96 97 98]
9 75 [ 0 1 2 3 4 5 6 7 8 10 11 12 13 14 16 17 18 19 20 22 23 24 26 28
29 30 31 32 34 36 37 38 40 41 42 43 44 46 47 48 50 52 53 54 56 58 59 60
61 62 64 66 67 68 70 71 72 73 74 76 78 79 80 82 83 84 86 88 89 90 92 94
96 97 98]
[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97]
# HALF SIEVE
n = 100
sieve = [True] * (n//2)
for i in range(3, int(n**0.5) + 1, 2):
if sieve[i//2]:
sieve[i*i//2::i] = [False] * ((n - i*i - 1) // (2*i) + 1)
print(i, len(np.flatnonzero(sieve)), np.flatnonzero(sieve))
print([2] + [2*i + 1 for i in range(1, n//2) if sieve[i]])
3 34 [ 0 1 2 3 5 6 8 9 11 12 14 15 17 18 20 21 23 24 26 27 29 30 32 33
35 36 38 39 41 42 44 45 47 48]
5 28 [ 0 1 2 3 5 6 8 9 11 14 15 18 20 21 23 24 26 29 30 33 35 36 38 39
41 44 45 48]
7 25 [ 0 1 2 3 5 6 8 9 11 14 15 18 20 21 23 26 29 30 33 35 36 39 41 44
48]
9 25 [ 0 1 2 3 5 6 8 9 11 14 15 18 20 21 23 26 29 30 33 35 36 39 41 44
48]
[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97]
def p2 (n):
""" FULL SIEVE
Returns a list of primes p < n.
https://stackoverflow.com/questions/2068372/fastest-way-to-list-all-primes-below-n/2068548
"""
sieve = [True] * n
for i in range(3, int(n ** 0.5) + 1, 2):
if sieve[i]:
sieve[i*i::2*i] = [False] * ((n - i * i - 1) // (2 * i) + 1)
return [2] + [i for i in range(3, n, 2) if sieve[i]]
def p3 (n):
""" HALF SIEVE
Returns a list of primes p < n.
https://stackoverflow.com/questions/2068372/fastest-way-to-list-all-primes-below-n/2068548
"""
sieve = [True] * (n//2)
for i in range(3, int(n**0.5) + 1, 2):
if sieve[i//2]:
sieve[i*i//2::i] = [False] * ((n - i*i - 1) // (2*i) + 1)
return [2] + [2*i + 1 for i in range(1, n//2) if sieve[i]]
%timeit p2(int(1e7))
%timeit p3(int(1e7))
208 ms ± 5.13 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
209 ms ± 3.13 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
NumPy and Numba#
def p4 (n : int) -> np.ndarray:
"""Sieve of Eratosthenes"""
flags = np.full(shape = n, fill_value = True) #np.ones(shape = n, dtype = bool)
flags[0], flags[1] = False, False # 0 and 1 are not prime
for i in range(2, int(n ** 0.5) + 1, 2):
if flags[i]:
flags[i*i::i] = False
return np.flatnonzero(a = flags)
%timeit p4(int(1e7))
12.7 ms ± 89.7 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
@njit(parallel = True, fastmath = True)
def p5 (n : int) -> np.ndarray:
"""Sieve of Eratosthenes"""
primes = np.full(shape = n, fill_value = True)
primes[0], primes[1] = False, False # 0 and 1 are not prime
for i in prange(2, int(n ** 0.5) + 1, 2):
if primes[i]:
primes[i*i::i] = False
return np.flatnonzero(a = primes)
%timeit p5(int(1e7))
---------------------------------------------------------------------------
NameError Traceback (most recent call last)
Cell In[17], line 1
----> 1 @njit(parallel = True, fastmath = True)
2 def p5 (n : int) -> np.ndarray:
3 """Sieve of Eratosthenes"""
4 primes = np.full(shape = n, fill_value = True)
NameError: name 'njit' is not defined
def p6 (n : int) -> np.ndarray:
""" Returns an array of primes, 3 <= p < n """
sieve = np.full(shape = n//2, fill_value = True) #np.ones(n//2, dtype=bool)
for i in range(3, int(n**0.5) + 1, 2):
if sieve[i//2]:
sieve[i*i//2::i] = False
return 2*np.nonzero(a = sieve)[0][1::] + 1
%timeit p6(int(1e7))
2.5 s ± 67.1 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
def p7 (n : int) -> np.ndarray:
""" Input n>=6, Returns an array of primes, 2 <= p < n """
sieve = np.full(shape = n//3 + (n%6==2), fill_value = True) #np.ones(n//3 + (n%6==2), dtype=bool)
for i in range(3, int(n**0.5)//3 + 1):
if sieve[i]:
k = 3*i + 1 | 1
sieve[k*k//3 ::2*k] = False
sieve[k*(k-2*(i&1)+4)//3::2*k] = False
return np.r_[2,3,((3*np.nonzero(sieve)[0][1:]+1)|1)]
%timeit p7(int(1e7))
2.57 s ± 78.2 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
%timeit p0(int(1e7))
%timeit p1(int(1e7))
%timeit p2(int(1e7))
%timeit p3(int(1e7))
%timeit p4(int(1e7))
%timeit p5(int(1e7))
%timeit p6(int(1e7))
%timeit p7(int(1e7))