Set Theory#
Contents#
Sections#
\( \begin{aligned} & \mathbb{N}^{+} &&= \{ 1, 2, 3, \dotsc \} && \text{positive integers} \\ & \mathbb{N} &&= \{ 0, 1, 2, 3, \dotsc \} && \text{natural numbers (nonnegative integers)} \\ & \mathbb{Z}^{ -} &&= \{ -1, -2, -3, \dotsc \} && \text{negative numbers} \\ & \mathbb{Z} &&= \{ \dotsc, -3, -2, -1, 0, 1, 2, 3, \dotsc \} && \text{integers} \\ & \mathbb{E} &&= \{ \dotsc, -4, -2, 0, 2, 4, \dotsc \} && \text{even numbers} \\ & \mathbb{O} &&= \{ \dotsc, -3, -1, 1, 3, \dotsc \} && \text{odd numbers} \\ & \mathbb{P} &&= \{ 2, 3, 5, 7, 11, \dotsc \} && \text{primes} \\ & \mathbb{Q} &&= \{ p/q \mid p, q \in \mathbb{Z}, q \ne 0 \} && \text{rational numbers, expressible as the ratio of two integers} \\ & \mathbb{R} && && \text{real numbers, the continuum} \\ & \mathbb{R - Q} &&= \{ x \mid x \in \mathbb{R} \land x \not\in \mathbb{Q} \} && \text{irrational numbers, not expressible as the ratio of two integers (algebraic vs transcendental)} \\ & \mathbb{I} &&= \{ bi \mid b \in \mathbb{R} \land i = \sqrt{-1} \} && \text{imaginary numbers} \\ & \mathbb{C} &&= \{ a + bi \mid a, b \in \mathbb{R} \land i = \sqrt{-1} \} && \text{complex numbers} \\ \end {aligned} \)
\( \begin{aligned} & \mathbb{Z}[x] && \text{the set of polynomials in } x \text{ with integral coefficients} \\ & \mathbb{Q}[x] && \text{the set of polynomials in } x \text{ with rational coefficients} \\ & \mathbb{R}[x] && \text{the set of polynomials in } x \text{ with real coefficients} \\ & \mathbb{Q}[x, y] && \text{the set of polynomials in } x, y \text{ with rational coefficients} \\ & \mathbb{R}[x, y] && \text{the set of polynomials in } x, y \text{ with real coefficients} \\ \end {aligned} \)
Figures#
Terms#
[ w ] Algebra of Sets
[ w ] Axiom of Choice
[ w ] Burali-Forti Paradox
[ w ] Cantor’s Diagonal Argument
[ w ] Cantor’s Paradise
[ w ] Cantor’s Paradox
[ w ] Cardinal Number
[ w ] Cartesian Product
[ w ] Class
[ w ] Complement of a Set
[ w ] Dedekind-Infinite Set
[ w ] Disjoint Sets
[ w ] Disjoint Union
[ w ] Element
[ w ] Empty Set
[ w ] Equinumerosity
[ w ] Equivalence Class
[ w ] Family of Sets
[ w ] Finite Set
[ w ] Infinite Set
[ w ] Intersection
[ w ] Large Cardinal Property
[ w ] Multiplicity
[ w ] Multiset
[ w ] Naive Set Theory
[ w ] Paradoxes of Set Theory
[ w ] Partition of a Set
[ w ] Power Set
[ w ] Russell’s Paradox
[ w ] Set
[ w ] Set Builder Notation
[ w ] Set Theory
[ w ] Singleton
[ w ] Subset
[ w ] Symmetric Difference
[ w ] Transfinite Number
[ w ] Union
[ w ] Universe
[ w ] Zermelo-Fraenkel Set Theory
[ s ] Category Theory
[ s ] Continuity and Infinitesimals
[ s ] Continuum Hypothesis
[ s ] Large Cardinals and Determinacy
[ s ] Large Cardinals and Independence
[ s ] Set Theory
[ s ] Set Theory, Alternative Axiomatic
[ s ] Set Theory, Early Development
[ s ] Set Theory, Zermelo’s Axiomatization